Application of the HAM-based Mathematica package SVPh 2.0 on MHD Falkner-Skan flow of nano-fluid

被引:147
作者
Farooq, U. [1 ,4 ]
Zhao, Y. L. [1 ]
Hayat, T. [2 ,3 ]
Alsaedi, A. [2 ]
Liao, S. J. [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[3] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
[4] Comsats Inst Informat Technol, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Falkner-Skan flow; MHD; Nanofluid; Homotopy analysis method; BVPh; 2.0; SERIES SOLUTION; WEDGE FLOW; EQUATION;
D O I
10.1016/j.compfluid.2015.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many boundary-layer flows are governed by one or coupled nonlinear ordinary differential equations (ODES). Currently, a Mathematica package BVPh 2.0 is issued for nonlinear boundary-value/eigenvalue problems with boundary conditions at multiple points. The BVPh 2.0 is based on an analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM), and is free available online. In this paper, the BVPh 2.0 is successfully applied to solve magnetohydrodynamic (MHD) Falkner-Skan flow of nano-fluid past a fixed wedge in a semi-infinite domain, and the influence of physical parameters on the considered flows is investigated in details. Physically, this work deepens and enriches our understandings about the magnetohydrodynamic Falkner-Skan flows of nano-fluid past a wedge. Mathematically, it illustrates the potential and validity of the BVPh 2.0 for complicated boundary-layer flows. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 25 条
[1]   Solution of the MHD Falkner-Skan flow by homotopy analysis method [J].
Abbasbandy, S. ;
Hayat, T. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) :3591-3598
[2]   Solution of the MHD Falkner-Skan flow by Hankel-Pade method [J].
Abbasbandy, S. ;
Hayat, T. .
PHYSICS LETTERS A, 2009, 373 (07) :731-734
[3]   Solution of the Falkner-Skan equation for wedge by Adomian Decomposition Method [J].
Alizadeh, Ebrahim ;
Farhadi, Mousa ;
Sedighi, Kurosh ;
Ebrahimi-Kebria, H. R. ;
Ghafourian, Akbar .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :724-733
[4]   On the generalized Falkner-Skan equation governing boundary layer flow of a FENE-P fluid [J].
Anabtawi, M. ;
Khuri, S. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (12) :1211-1215
[5]  
[Anonymous], 2007, NANOFLUIDS SCI TECHN
[6]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[7]  
Choi SUS., 1995, ASMEPUBLICATIONS FED, V231, P99, DOI DOI 10.1063/1.1341218
[8]  
Fallah APM, 2012, P IAM, V1, P15
[9]   Boundary Layer Flow Past a Wedge Moving in a Nanofluid [J].
Khan, Waqar A. ;
Pop, I. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[10]  
Khantuwan W., 2012, P 2012 IEEE 9 INT C, P1, DOI [10.1109/ECTICon.2012.6254280, DOI 10.1109/ECTICON.2012.6254280]