Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs

被引:65
作者
Fernández, MA [1 ]
Milisic, V [1 ]
Quarteroni, A [1 ]
机构
[1] Ecole Polytech Fed Lausanne, IACS, CH-1015 Lausanne, Switzerland
关键词
multiscale modeling; hyperbolic systems; lumped parameters models; blood flow modeling; fixed-point techniques;
D O I
10.1137/030602010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the numerical simulation of the circulatory system, geometrical multiscale models based on the coupling of systems of differential equations with different spatial dimensions are becoming common practice [L. Formaggia et al., Comput. Vis. Sci., 2 (1999), pp. 75-83, A. Quarteroni and A. Veneziani, Multiscale Model. Simul., 1 (2003), pp. 173-195, L. Formaggia et al., Comput. Methods Appl. Mech. Engrg., 191 (2001), pp. 561-582]. In this paper we address the mathematical analysis of a coupled multiscale system involving a zero-dimensional (0D) model, describing the global characteristics of the circulatory system, and a one-dimensional (1D) model giving the pressure propagation along a straight vessel. We provide a local-in-time existence and uniqueness of classical solutions for this coupled problem. To this purpose we reformulate the original problem in a general abstract framework by splitting it into subproblems (the 0D system of ODEs and the 1D hyperbolic system of PDEs); then we use fixed-point techniques. The abstract result is then applied to the original blood flow case under very realistic hypotheses on the data. This work represents the 1D-0D counterpart of the 3D-0D mathematical analysis reported in [A. Quarteroni and A. Veneziani, Multiscale Model. Simul., 1 (2003), pp. 173-195].
引用
收藏
页码:215 / 236
页数:22
相关论文
共 31 条
[21]   Computational vascular fluid dynamics: Problems, models and methods [J].
Quarteroni, Alfio ;
Tuveri, Massimiliano ;
Veneziani, Alessandro .
2000, Springer Verlag (02) :163-197
[22]   Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations [J].
Quarteroni, A ;
Veneziani, A .
MULTISCALE MODELING & SIMULATION, 2003, 1 (02) :173-195
[24]  
Quarteroni A., 1994, SPRINGER SER COMPUT, V23
[25]  
SAGAWA K, 1978, CARDIOVASCULAR SYSTE, P99
[26]  
SERRE D, 1996, SYSTEMES LOIS CONSER, V2
[27]  
SHERWIN S, IN PRESS INT J NUMER
[28]  
SHERWIN S, UNPUB J ENG MATH
[29]   An anatomically based model of transient coronary blood flow in the heart [J].
Smith, NP ;
Pullan, AJ ;
Hunter, PJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :990-1018
[30]   COMPUTER-SIMULATION OF ARTERIAL FLOW WITH APPLICATIONS TO ARTERIAL AND AORTIC STENOSES [J].
STERGIOPULOS, N ;
YOUNG, DF ;
ROGGE, TR .
JOURNAL OF BIOMECHANICS, 1992, 25 (12) :1477-1488