Lattice representation and dark solitons of the Fokas-Lenells equation

被引:51
作者
Vekslerchik, V. E. [1 ,2 ]
机构
[1] Ukrainian Acad Sci, Inst Radiophys & Elect, UA-310085 Kharkov, Ukraine
[2] Univ Castilla La Mancha, E-13071 Ciudad Real, Spain
关键词
D O I
10.1088/0951-7715/24/4/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to an integrable generalization of the nonlinear Schrodinger equation proposed by Fokas and Lenells. I discuss the relationships between this equation and other integrable models. Using the reduction of the Fokas-Lenells equation to the already known ones I obtain the N-dark soliton solutions.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 8 条
[1]  
FOKAS A, 1995, STUD APPL MATH, V87, P215
[2]   On a novel integrable generalization of the nonlinear Schrodinger equation [J].
Lenells, J. ;
Fokas, A. S. .
NONLINEARITY, 2009, 22 (01) :11-27
[3]   A NOVEL HIERARCHY OF INTEGRABLE LATTICES [J].
MEROLA, I ;
RAGNISCO, O ;
ZHANG, TG .
INVERSE PROBLEMS, 1994, 10 (06) :1315-1334
[4]   DISCRETE NONLINEAR SCHRODINGER-EQUATION UNDER NONVANISHING BOUNDARY-CONDITIONS [J].
VEKSLERCHIK, VE ;
KONOTOP, VV .
INVERSE PROBLEMS, 1992, 8 (06) :889-909
[5]   The Davey-Stewartson equation and the Ablowitz-Ladik hierarchy [J].
Vekslerchik, VE .
INVERSE PROBLEMS, 1996, 12 (06) :1057-1074
[6]   THE 2D TODA LATTICE AND THE ABLOWITZ-LADIK HIERARCHY [J].
VEKSLERCHIK, VE .
INVERSE PROBLEMS, 1995, 11 (02) :463-479
[7]  
VEKSLERCHIK VE, ARXIVSOLVINT9807005
[8]  
VEKSLERCHIK VE, 1998, IC1998052 ICTP