An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

被引:101
作者
Liang, Cuishan [1 ,2 ]
Cheng, Zixuan [2 ,4 ]
Huang, Yanqi [2 ]
He, Lan [2 ,4 ]
Chen, Xin [5 ]
Ma, Zelan [2 ]
Huang, Xiaomei [1 ,2 ]
Liang, Changhong [2 ,3 ]
Liu, Zaiyi [2 ,3 ]
机构
[1] Southern Med Univ, Grad Coll, 1023 Shatai Nan Rd, Guangzhou 510515, Guangdong, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Gen Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
[3] Southern Med Univ, Clin Med Sch 2, 1023 Shatai Nan Rd, Guangzhou 510515, Guangdong, Peoples R China
[4] South China Univ Technol, Sch Med, Guangzhou, Guangdong, Peoples R China
[5] Guangzhou Med Univ, Affiliated Guangzhou People Hosp 1, Dept Radiol, Guangzhou, Guangdong, Peoples R China
关键词
Breast cancer; MRI; radiomics; Ki-67; INTRATUMORAL HETEROGENEITY; AMERICAN SOCIETY; TEXTURE ANALYSIS; PROGNOSTIC VALUE; INDEX; PROLIFERATION; CARCINOMA; THERAPY; RECURRENCE; MALIGNANCY;
D O I
10.1016/j.acra.2018.01.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: This study aims to investigate the value of a magnetic resonance imaging-based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods: We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results: Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image-based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions: The T2W image-based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
引用
收藏
页码:1111 / 1117
页数:7
相关论文
共 41 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 2015, 2015 INT C SOFT COMP
[3]   Impact of tissue sampling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer [J].
Besusparis, Justinas ;
Plancoulaine, Benoit ;
Rasmusson, Allan ;
Augulis, Renaldas ;
Green, Andrew R. ;
Ellis, Ian O. ;
Laurinaviciene, Aida ;
Herlin, Paulette ;
Laurinavicius, Arvydas .
DIAGNOSTIC PATHOLOGY, 2016, 11
[4]   Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. [J].
Bickelhaupt, Sebastian ;
Paech, Daniel ;
Kickingereder, Philipp ;
Steudle, Franziska ;
Lederer, Wolfgang ;
Daniel, Heidi ;
Goetz, Michael ;
Gaehlert, Nils ;
Tichy, Diana ;
Wiesenfarth, Manuel ;
Laun, Frederik B. ;
Maier-Hein, Klaus H. ;
Schlemmer, Heinz-Peter ;
Bonekamp, David .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (02) :604-616
[5]   Intratumoral Heterogeneity for Ki-67 Index in Invasive Breast Carcinoma: A Study on 131 Consecutive Cases [J].
Boros, Monica ;
Moncea, Denisa ;
Moldovan, Cosmin ;
Podoleanu, Cristian ;
Georgescu, Rares ;
Stolnicu, Simona .
APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2017, 25 (05) :338-340
[6]   Global cancer transitions according to the Human Development Index (2008-2030): a population-based study [J].
Bray, Freddie ;
Jemal, Ahmedin ;
Grey, Nathan ;
Ferlay, Jacques ;
Forman, David .
LANCET ONCOLOGY, 2012, 13 (08) :790-801
[7]   Prognostic Value of a Combined Estrogen Receptor, Progesterone Receptor, Ki-67, and Human Epidermal Growth Factor Receptor 2 Immunohistochemical Score and Comparison With the Genomic Health Recurrence Score in Early Breast Cancer [J].
Cuzick, Jack ;
Dowsett, Mitch ;
Pineda, Silvia ;
Wale, Christopher ;
Salter, Janine ;
Quinn, Emma ;
Zabaglo, Lila ;
Mallon, Elizabeth ;
Green, Andrew R. ;
Ellis, Ian O. ;
Howell, Anthony ;
Buzdar, Aman U. ;
Forbes, John F. .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (32) :4273-4278
[8]   Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis [J].
Diwakar, N ;
Sperandio, M ;
Sherriff, M ;
Brown, A ;
Odell, EW .
ORAL ONCOLOGY, 2005, 41 (04) :416-422
[9]   Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer [J].
Dowsett, Mitch ;
Smith, Ian E. ;
Ebbs, Stephen R. ;
Dixon, J. Michael ;
Skene, Anthony ;
A'Hern, Roger ;
Salter, Janine ;
Detre, Simone ;
Hills, Margaret ;
Walsh, Geraldine .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (02) :167-170
[10]   Ki67 Proliferation Index as a Tool for Chemotherapy Decisions During and After Neoadjuvant Aromatase Inhibitor Treatment of Breast Cancer: Results From the American College of Surgeons Oncology Group Z1031 Trial (Alliance) [J].
Ellis, Matthew J. ;
Suman, Vera J. ;
Hoog, Jeremy ;
Goncalves, Rodrigo ;
Sanati, Souzan ;
Creighton, Chad J. ;
DeSchryver, Katherine ;
Crouch, Erika ;
Brink, Amy ;
Watson, Mark ;
Luo, Jingqin ;
Tao, Yu ;
Barnes, Michael ;
Dowsett, Mitchell ;
Budd, G. Thomas ;
Winer, Eric ;
Silverman, Paula ;
Esserman, Laura ;
Carey, Lisa ;
Ma, Cynthia X. ;
Unzeitig, Gary ;
Pluard, Timothy ;
Whitworth, Pat ;
Babiera, Gildy ;
Guenther, J. Michael ;
Dayao, Zoneddy ;
Ota, David ;
Leitch, Marilyn ;
Olson, John A., Jr. ;
Allred, D. Craig ;
Hunt, Kelly .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (10) :1061-+