Integration of vis-NIR and pXRF spectroscopy for rapid measurement of soil lead concentrations

被引:16
|
作者
Pozza, L. E. [1 ]
Bishop, T. F. A. [1 ]
Stockmann, U. [2 ]
Birch, G. F. [3 ]
机构
[1] Univ Sydney, Sydney Inst Agr, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[2] CSIRO Agr & Food, Black Mt Sci & Innovat Pk, Canberra, ACT 2601, Australia
[3] Univ Sydney, Sch Geosci, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
model averaging; portable X-ray fluorescence spectroscopy; soil contamination; soil spectroscopy; visible near-infrared spectroscopy; NEAR-INFRARED SPECTROSCOPY; URBANIZED SUB-CATCHMENT; ORGANIC-CARBON; HEAVY-METALS; ENHANCED ASSESSMENT; FIELD SPECTROSCOPY; SPATIAL-ANALYSIS; SYDNEY ESTUARY; PORT-JACKSON; CONTAMINATION;
D O I
10.1071/SR19174
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Heavy metals accumulate in soil over time and, with changing land use, humans may be exposed to elevated contaminant concentrations. It is therefore important to delineate contaminated sites in the most efficient and accurate manner. Sensors, such as portable X-ray fluorescence (pXRF) and visible near-infrared (vis-NIR) spectroscopy predict metal concentrations more rapidly and in a less hazardous manner compared to traditional laboratory analytical methods. The current study explored the potential for integrating vis-NIR and pXRF outputs to improve lead predictions in fine- (<62.5 mu m) and whole-fraction (<2 mm) soil samples. A multi-stage approach was taken to compare different data treatments and combination methods for the prediction of whole-fraction lead content. Data treatment included principal component analysis, and combination methods included concatenation of pXRF and vis-NIR spectra before modelling, and Granger-Ramanathan model averaging of pXRF and vis-NIR model outputs. The most accurate predictions of whole-fraction lead were obtained by Granger-Ramanathan model averaging of vis-NIR Cubist predictions and Compton-normalised pXRF output: Lin's Concordance Correlation Coefficient (LCCC) = 0.95, root mean square error (RMSE) = 86.4 mg kg(-1), Bias < 0.001 mg kg(-1) and ratio of performance to inter-quartile range (RPIQ) = 0.37. The most suitable modelling method was then used to predict fine-fraction lead, which provided a similarly accurate model fit (LCCC = 0.94, RMSE = 84.2 mg kg(-1), Bias < 0.001 mg kg(-1) and RPIQ = 0.34), indicating the potential to reduce the number of samples required for fine-fraction processing. In addition, the quality of the prediction interval estimates was examined - an important aspect in modelling which is underutilised in current literature related to soil spectroscopy.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [41] Estimating purple-soil moisture content using Vis-NIR spectroscopy
    GOU Yu
    WEI Jie
    LI Jin-lin
    HAN Chen
    TU Qing-yan
    LIU Chun-hong
    Journal of Mountain Science, 2020, 17 (09) : 2214 - 2223
  • [42] Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon
    Deng, Fan
    Minasny, Budiman
    Knadel, Maria
    McBratney, Alex
    Heckrath, Goswin
    Greve, Mogens H.
    SOIL SCIENCE, 2013, 178 (08) : 389 - 399
  • [43] Estimating purple-soil moisture content using Vis-NIR spectroscopy
    Yu Gou
    Jie Wei
    Jin-lin Li
    Chen Han
    Qing-yan Tu
    Chun-hong Liu
    Journal of Mountain Science, 2020, 17 : 2214 - 2223
  • [44] Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties
    Conforti, Massimo
    Matteucci, Giorgio
    Buttafuoco, Gabriele
    JOURNAL OF SOILS AND SEDIMENTS, 2018, 18 (03) : 1009 - 1019
  • [45] Synergistic Use of Vis-NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry
    O'Rourke, S. M.
    Minasny, B.
    Holden, N. M.
    McBratney, A. B.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (04) : 888 - 899
  • [46] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    A. V. Chinilin
    G. V. Vindeker
    I. Yu. Savin
    Eurasian Soil Science, 2023, 56 : 1605 - 1617
  • [47] Development of a soil fertility index using on-line Vis-NIR spectroscopy
    Munnaf, Muhammad Abdul
    Mouazen, Abdul Mounem
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 188
  • [48] Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery
    Lu, Peng
    Wang, Li
    Niu, Zheng
    Li, Linghao
    Zhang, Wenhao
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2013, 132 : 26 - 33
  • [49] Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties
    Massimo Conforti
    Giorgio Matteucci
    Gabriele Buttafuoco
    Journal of Soils and Sediments, 2018, 18 : 1009 - 1019
  • [50] Nondestructive Measurement of Sugar Content in Navel Orange Based on Vis-NIR Spectroscopy
    Luo, Chunsheng
    Xue, Long
    Liu, Muhua
    Li, Jing
    Wang, Xiao
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IV, PT 4, 2011, 347 : 467 - +