Integration of vis-NIR and pXRF spectroscopy for rapid measurement of soil lead concentrations

被引:16
|
作者
Pozza, L. E. [1 ]
Bishop, T. F. A. [1 ]
Stockmann, U. [2 ]
Birch, G. F. [3 ]
机构
[1] Univ Sydney, Sydney Inst Agr, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
[2] CSIRO Agr & Food, Black Mt Sci & Innovat Pk, Canberra, ACT 2601, Australia
[3] Univ Sydney, Sch Geosci, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
model averaging; portable X-ray fluorescence spectroscopy; soil contamination; soil spectroscopy; visible near-infrared spectroscopy; NEAR-INFRARED SPECTROSCOPY; URBANIZED SUB-CATCHMENT; ORGANIC-CARBON; HEAVY-METALS; ENHANCED ASSESSMENT; FIELD SPECTROSCOPY; SPATIAL-ANALYSIS; SYDNEY ESTUARY; PORT-JACKSON; CONTAMINATION;
D O I
10.1071/SR19174
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Heavy metals accumulate in soil over time and, with changing land use, humans may be exposed to elevated contaminant concentrations. It is therefore important to delineate contaminated sites in the most efficient and accurate manner. Sensors, such as portable X-ray fluorescence (pXRF) and visible near-infrared (vis-NIR) spectroscopy predict metal concentrations more rapidly and in a less hazardous manner compared to traditional laboratory analytical methods. The current study explored the potential for integrating vis-NIR and pXRF outputs to improve lead predictions in fine- (<62.5 mu m) and whole-fraction (<2 mm) soil samples. A multi-stage approach was taken to compare different data treatments and combination methods for the prediction of whole-fraction lead content. Data treatment included principal component analysis, and combination methods included concatenation of pXRF and vis-NIR spectra before modelling, and Granger-Ramanathan model averaging of pXRF and vis-NIR model outputs. The most accurate predictions of whole-fraction lead were obtained by Granger-Ramanathan model averaging of vis-NIR Cubist predictions and Compton-normalised pXRF output: Lin's Concordance Correlation Coefficient (LCCC) = 0.95, root mean square error (RMSE) = 86.4 mg kg(-1), Bias < 0.001 mg kg(-1) and ratio of performance to inter-quartile range (RPIQ) = 0.37. The most suitable modelling method was then used to predict fine-fraction lead, which provided a similarly accurate model fit (LCCC = 0.94, RMSE = 84.2 mg kg(-1), Bias < 0.001 mg kg(-1) and RPIQ = 0.34), indicating the potential to reduce the number of samples required for fine-fraction processing. In addition, the quality of the prediction interval estimates was examined - an important aspect in modelling which is underutilised in current literature related to soil spectroscopy.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [21] Optimal sample selection for measurement of soil organic carbon using online vis-NIR spectroscopy
    Nawar, Said
    Mouazen, Abdul M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 469 - 477
  • [22] Estimation of soil organic matter in Cambisol soil using vis-NIR spectroscopy
    Gonzalez-Aguiar, Diana
    Colas-Sanchez, Ariany
    Rodriguez-Lopez, Oralia
    Luisa Alvarez-Vazquez, Delia
    Gattorno-Munoz, Sirley
    Chacon-Iznaga, Ahmed
    CENTRO AGRICOLA, 2020, 47 (03): : 23 - 32
  • [23] Permafrost soil complexity evaluated by laboratory imaging Vis-NIR spectroscopy
    Mueller, Carsten W.
    Steffens, Markus
    Buddenbaum, Henning
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2021, 72 (01) : 114 - 119
  • [24] Integration of Vis-NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions
    Jiang, Chuanli
    Zhao, Jianyun
    Li, Guorong
    AGRONOMY-BASEL, 2023, 13 (11):
  • [25] Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess
    Gafur GOZUKARA
    Yakun ZHANG
    Alfred E.HARTEMINK
    Pedosphere, 2022, 32 (04) : 602 - 615
  • [26] Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess
    Gozukara, Gafur
    Zhang, Yakun
    Hartemink, Alfred E.
    PEDOSPHERE, 2022, 32 (04) : 602 - 615
  • [27] Soil Organic Matter Content Estimation Based on Soil Covariate and VIS-NIR Spectroscopy
    Ma Guolin
    Ding Jianli
    Zhang Zipeng
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (19)
  • [28] Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess
    Gafur GOZUKARA
    Yakun ZHANG
    Alfred EHARTEMINK
    Pedosphere , 2022, (04) : 602 - 615
  • [29] Rapid Classification of Petroleum Waxes: A Vis-NIR Spectroscopy and Machine Learning Approach
    Barea-Sepulveda, Marta
    Calle, Jose Luis P.
    Ferreiro-Gonzalez, Marta
    Palma, Miguel
    FOODS, 2023, 12 (18)
  • [30] Application of portable Vis-NIR spectroscopy for rapid detection of myoglobin in frozen pork
    Rong, Yanna
    Zareef, Muhammad
    Liu, Lihua
    Din, Zia Ud
    Chen, Quansheng
    Ouyang, Qin
    MEAT SCIENCE, 2023, 201