Advances in Bioinspired Triboelectric Nanogenerators

被引:28
|
作者
Mayer, Mylan [1 ]
Xiao, Xiao [1 ]
Yin, Junyi [1 ]
Chen, Guorui [1 ]
Xu, Jing [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
关键词
biodegradable; bioinspired; natural materials; sensors; triboelectric nanogenerators; WATER-WAVE ENERGY; HARVESTING BIOMECHANICAL ENERGY; GRAPHENE OXIDE MEMBRANES; HIGH-PERFORMANCE; NATURAL-SELECTION; ACTIVE SENSORS; POWER SOURCE; SHOE INSOLE; WIND ENERGY; HYBRID CELL;
D O I
10.1002/aelm.202200782
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Triboelectric nanogenerators (TENGs) have quickly become one of the most popular mechanisms for harvesting ambient mechanical energy due to their simple design, facile construction, abundance of material choices, and cost-effectiveness. Over the past decade, TENG research has been heavily focused on methods of construction that improve output or function in specific applications. Recently many researchers have looked to the design of the world around them to create more advanced TENGs, investigating the unique qualities that organisms use to survive and thrive in their environments. These bioinspired TENGs are often more efficient, more environmentally friendly, or possess more capabilities than their standard TENG counterparts. Herein, this paper provides a review of recent advances in TENGs that utilize inspiration or novel materials from nature for use in biomonitoring, artificial intelligence texture detection, wind energy harvesting, blue energy harvesting and other applications. The unique qualities of these TENGs include sweat-resistance, biodegradability, increased output parameters, and more. This review is organized into plant-inspired, animal-inspired, human-inspired, and other bioinspired TENGs. Each study's source of inspiration, the problems they sought to address, and the output parameters of the device are discussed, followed by a discussion of current challenges and promising future directions for field advancement.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
    Yao, Guo
    Xu, Liang
    Cheng, Xiaowen
    Li, Yangyang
    Huang, Xin
    Guo, Wei
    Liu, Shaoyu
    Wang, Zhong Lin
    Wu, Hao
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
  • [32] Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices
    Wang, Yaling
    Zhu, Pengcheng
    Sun, Yue
    Li, Pan
    Mao, Yanchao
    BIO-DESIGN AND MANUFACTURING, 2024, 7 (04) : 566 - 590
  • [33] Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices
    Yaling Wang
    Pengcheng Zhu
    Yue Sun
    Pan Li
    Yanchao Mao
    Bio-DesignandManufacturing, 2024, 7 (04) : 566 - 590
  • [34] Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators
    Haghayegh, Marjan
    Cao, Ran
    Zabihi, Fatemeh
    Bagherzadeh, Roohollah
    Yang, Shengyuan
    Zhu, Meifang
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (32) : 11439 - 11471
  • [35] Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications
    Choi, Dongwhi
    Lee, Younghoon
    Lin, Zong-Hong
    Cho, Sumin
    Kim, Miso
    Ao, Chi Kit
    Soh, Siowling
    Sohn, Changwan
    Jeong, Chang Kyu
    Lee, Jeongwan
    Lee, Minbaek
    Lee, Seungah
    Ryu, Jungho
    Parashar, Parag
    Cho, Yujang
    Ahn, Jaewan
    Kim, Il-Doo
    Jiang, Feng
    Lee, Pooi See
    Khandelwal, Gaurav
    Kim, Sang-Jae
    Kim, Hyun Soo
    Song, Hyun-Cheol
    Kim, Minje
    Nah, Junghyo
    Kim, Wook
    Menge, Habtamu Gebeyehu
    Park, Yong Tae
    Xu, Wei
    Hao, Jianhua
    Park, Hyosik
    Lee, Ju-Hyuck
    Lee, Dong-Min
    Kim, Sang-Woo
    Park, Ji Young
    Zhang, Haixia
    Zi, Yunlong
    Guo, Ru
    Cheng, Jia
    Yang, Ze
    Xie, Yannan
    Lee, Sangmin
    Chung, Jihoon
    Oh, Il-Kwon
    Kim, Ji-Seok
    Cheng, Tinghai
    Gao, Qi
    Cheng, Gang
    Gu, Guangqin
    Shim, Minseob
    ACS NANO, 2023, 17 (12) : 11087 - 11219
  • [36] Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators
    Du, Taili
    Dong, Fangyang
    Xi, Ziyue
    Zhu, Meixian
    Zou, Yongjiu
    Sun, Peiting
    Xu, Minyi
    SMALL, 2023, 19 (22)
  • [37] Advances in Metal-Organic Framework-Based Triboelectric Nanogenerators
    Wang, Yong-Mei
    Zhang, Xinxin
    Ran, Yong
    Liu, Cunshun
    Wang, Dong
    Mao, Guoyu
    Jiang, Xue
    Wang, Shuang
    Yin, Xue-Bo
    Yang, Rusen
    ACS MATERIALS LETTERS, 2024, 6 (08): : 3883 - 3898
  • [38] Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators
    Kim, Hakjeong
    Nguyen, Dinh Cong
    Luu, Thien Trung
    Ding, Zhengbing
    Lin, Zong-Hong
    Choi, Dukhyun
    NANOMATERIALS, 2023, 13 (19)
  • [39] Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring
    Jiang, Yang
    Liang, Xi
    Jiang, Tao
    Wang, Zhong Lin
    ENGINEERING, 2024, 33 : 204 - 224
  • [40] Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives
    Li, Jiaqi
    Chen, Jie
    Guo, Hengyu
    ENERGIES, 2021, 14 (21)