Spatiotemporal clustering: a review

被引:73
作者
Ansari, Mohd Yousuf [1 ]
Ahmad, Amir [2 ]
Khan, Shehroz S. [3 ]
Bhushan, Gopal [1 ]
Mainuddin [4 ]
机构
[1] DRDO, Def Sci Informat & Documentat Ctr DESIDOC, Metcalfe House, Delhi 110054, India
[2] United Arab Emirates Univ, Coll Informat Technol, Al Ain, U Arab Emirates
[3] Univ Hlth Network, Toronto Rehabil Inst, Toronto, ON, Canada
[4] Jamia Millia Islamia, Dept Elect & Commun, Fac Engn & Technol, New Delhi 110025, India
关键词
Data mining; Spatiotemporal clustering; Patterns; Cluster validation; ALGORITHM; VALIDATION; SEARCH;
D O I
10.1007/s10462-019-09736-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is "spatiotemporal clustering," a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space-time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.
引用
收藏
页码:2381 / 2423
页数:43
相关论文
共 118 条
  • [101] Rendon E., 2011, Int. J. Comput. Commun., V5, P27
  • [102] Visually driven analysis of movement data by progressive clustering
    Rinzivillo, Salvatore
    Pedreschi, Dino
    Nanni, Mirco
    Giannotti, Fosca
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. INFORMATION VISUALIZATION, 2008, 7 (3-4) : 225 - 239
  • [103] Rocha J.A.M., 2010, 2010 5th IEEE International Conference Intelligent Systems, P114, DOI DOI 10.1109/IS.2010.5548396
  • [104] COMPUTING GEOMETRIC-PROPERTIES OF IMAGES REPRESENTED BY LINEAR QUADTREES
    SAMET, H
    TAMMINEN, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (02) : 229 - 240
  • [105] Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    Sander, J
    Ester, M
    Kriegel, HP
    Xu, XW
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 169 - 194
  • [106] Sellis T., 1987, Proceedings of the Thirteenth International Conference on Very Large Data Bases: 1987 13th VLDB, P507
  • [107] Shekhar S.R.R., 2008, Spatial and Spatiotemporal Data Mining: Recent Advances
  • [108] Spatiotemporal Data Mining: A Computational Perspective
    Shekhar, Shashi
    Jiang, Zhe
    Ali, Reem Y.
    Eftelioglu, Emre
    Tang, Xun
    Gunturi, Venkata M. V.
    Zhou, Xun
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04) : 2306 - 2338
  • [109] Discovering Chasing Behavior in Moving Object Trajectories
    Siqueira, Fernando de Lucca
    Bogorny, Vania
    [J]. TRANSACTIONS IN GIS, 2011, 15 (05) : 667 - 688
  • [110] A conceptual view on trajectories
    Spaccapietra, Stefano
    Parent, Christine
    Damiani, Maria Luisa
    de Macedo, Jose Antonio
    Portoa, Fabio
    Vangenot, Christelle
    [J]. DATA & KNOWLEDGE ENGINEERING, 2008, 65 (01) : 126 - 146