Spatiotemporal clustering: a review

被引:73
作者
Ansari, Mohd Yousuf [1 ]
Ahmad, Amir [2 ]
Khan, Shehroz S. [3 ]
Bhushan, Gopal [1 ]
Mainuddin [4 ]
机构
[1] DRDO, Def Sci Informat & Documentat Ctr DESIDOC, Metcalfe House, Delhi 110054, India
[2] United Arab Emirates Univ, Coll Informat Technol, Al Ain, U Arab Emirates
[3] Univ Hlth Network, Toronto Rehabil Inst, Toronto, ON, Canada
[4] Jamia Millia Islamia, Dept Elect & Commun, Fac Engn & Technol, New Delhi 110025, India
关键词
Data mining; Spatiotemporal clustering; Patterns; Cluster validation; ALGORITHM; VALIDATION; SEARCH;
D O I
10.1007/s10462-019-09736-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is "spatiotemporal clustering," a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space-time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.
引用
收藏
页码:2381 / 2423
页数:43
相关论文
共 118 条
  • [91] A Survey on Data Mining Methods for Clustering Complex Spatiotemporal Data
    Maciag, Piotr S.
    [J]. BEYOND DATABASES, ARCHITECTURES AND STRUCTURES: TOWARDS EFFICIENT SOLUTIONS FOR DATA ANALYSIS AND KNOWLEDGE REPRESENTATION, 2017, 716 : 115 - 126
  • [92] MacQueen J., 1967, P 5 BERKELEY S MATH, P281
  • [93] Manco G., 2008, Mobility, Data Mining and Privacy, P335
  • [94] Trajectory data mining: A review of methods and applications
    Mazimpaka, Jean Damascene
    Timpf, Sabine
    [J]. JOURNAL OF SPATIAL INFORMATION SCIENCE, 2016, (13): : 61 - 99
  • [95] Data mining tools
    Mikut, Ralf
    Reischl, Markus
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (05) : 431 - 443
  • [96] A MONTE-CARLO STUDY OF 30 INTERNAL CRITERION MEASURES FOR CLUSTER-ANALYSIS
    MILLIGAN, GW
    [J]. PSYCHOMETRIKA, 1981, 46 (02) : 187 - 199
  • [97] Otair Mohammed., 2013, International journal of database management systems, V5, P97, DOI DOI 10.5121/IJDMS.2013.5108
  • [98] Palma AT, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P863
  • [99] Pearson K., 1895, P R SOC LOND, V58, P240, DOI DOI 10.1098/RSPL.1895.0041
  • [100] Pelekis N, 2007, INT WORKSHOP TEMPORA, P129