Spatiotemporal clustering: a review

被引:73
作者
Ansari, Mohd Yousuf [1 ]
Ahmad, Amir [2 ]
Khan, Shehroz S. [3 ]
Bhushan, Gopal [1 ]
Mainuddin [4 ]
机构
[1] DRDO, Def Sci Informat & Documentat Ctr DESIDOC, Metcalfe House, Delhi 110054, India
[2] United Arab Emirates Univ, Coll Informat Technol, Al Ain, U Arab Emirates
[3] Univ Hlth Network, Toronto Rehabil Inst, Toronto, ON, Canada
[4] Jamia Millia Islamia, Dept Elect & Commun, Fac Engn & Technol, New Delhi 110025, India
关键词
Data mining; Spatiotemporal clustering; Patterns; Cluster validation; ALGORITHM; VALIDATION; SEARCH;
D O I
10.1007/s10462-019-09736-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is "spatiotemporal clustering," a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space-time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.
引用
收藏
页码:2381 / 2423
页数:43
相关论文
共 118 条
  • [1] Achtert E, 2008, LECT NOTES COMPUT SC, V5069, P580
  • [2] Development and validation of OPTICS based spatio-temporal clustering technique
    Agrawal, K. P.
    Garg, Sanjay
    Sharma, Shashikant
    Patel, Pinkal
    [J]. INFORMATION SCIENCES, 2016, 369 : 388 - 401
  • [3] Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
  • [4] A k-mean clustering algorithm for mixed numeric and categorical data
    Ahmad, Amir
    Dey, Lipika
    [J]. DATA & KNOWLEDGE ENGINEERING, 2007, 63 (02) : 503 - 527
  • [5] A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring
    Alatrista-Salas, H.
    Aze, J.
    Bringay, S.
    Cernesson, F.
    Selmaoui-Folcher, N.
    Teisseire, M.
    [J]. ECOLOGICAL INFORMATICS, 2015, 26 : 127 - 139
  • [6] Alon J, 2003, PROC CVPR IEEE, P375
  • [7] Alvares L. O., 2011, J BRAZILIAN COMPUTER, V17, P193, DOI [10.1007/s13173-011-0037-3, DOI 10.1007/S13173-011-0037-3]
  • [8] Non-recurrent traffic congestion detection on heterogeneous urban road networks
    Anbaroglu, Berk
    Cheng, Tao
    Heydecker, Benjamin
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2015, 11 (09) : 754 - 771
  • [9] Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
  • [10] [Anonymous], EITI