Thermal conductivity of Si-Ge quantum dot superlattices

被引:22
作者
Haskins, J. B. [1 ]
Kinaci, A.
Cagin, T. [1 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA
关键词
ENHANCED THERMOELECTRIC FIGURE; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SELF-ORGANIZED GROWTH; OF-MERIT; SIMULATION; EFFICIENCY;
D O I
10.1088/0957-4484/22/15/155701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dot superlattices (QDSLs) have been proposed for thermoelectric applications as a means of increasing thermal conductivity, sigma, and reducing the lattice thermal conductivity,kappa(l), to increase the dimensionless thermoelectric figure of merit, ZT. To fully exploit the thermoelectric potential of Si-Ge quantum dot superlattices (QDSLs), we performed a thorough study of the structural interplay of QDSLs with kappa(l) using Green-Kubo theory and molecular dynamics. It was found that the resulting kappa(l) has less dependence on the arrangement of the dots than to dot size and spacing. In fact, regardless of arrangement or concentration, QDSLs show a minimum kappa(l) at a dot diameter of 1.4-1.6 nm and can reach values as low as 0.8-1.0 W mK(-1), increasing ZT by orders of magnitude over bulk Si and Ge. The drastic reduction of thermal conductivity in such a crystalline system is shown to be the result of both the stress caused by the dots as well as the quality of the Si-Ge interface.
引用
收藏
页数:7
相关论文
共 43 条
[1]   THERMAL CONDUCTIVITY OF GE-SI ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B ;
BEERS, DS ;
DISMUKES, JP ;
CODY, GD .
PHYSICAL REVIEW, 1962, 125 (01) :44-&
[2]   THERMAL-CONDUCTIVITY OF GLASSES - THEORY AND APPLICATION TO AMORPHOUS SI [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW LETTERS, 1989, 62 (06) :645-648
[3]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[4]   Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices [J].
Balandin, AA ;
Lazarenkova, OL .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :415-417
[5]   Electrical and thermal conductivity of Ge/Si quantum dot superlattices [J].
Bao, Y ;
Liu, WL ;
Shamsa, M ;
Alim, K ;
Balandin, AA ;
Liu, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (06) :G432-G435
[6]   THERMAL-CONDUCTIVITY OF THIN-FILMS - MEASUREMENTS AND UNDERSTANDING [J].
CAHILL, DG ;
FISCHER, HE ;
KLITSNER, T ;
SWARTZ, ET ;
POHL, RO .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :1259-1266
[7]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[8]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[9]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851
[10]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053