C3N4 coordinated metal-organic-framework-derived network as air-cathode for high performance of microbial fuel cell

被引:23
|
作者
Zhang, Yuyan [1 ,2 ]
Tian, Pei [1 ,2 ]
Li, Kexun [1 ,2 ]
Zhang, Zhaohui [3 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Environm Remediat & Pollut Contro, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin 300071, Peoples R China
[3] Tianjin Polytech Univ, Dept Environm Engn, Tianjin 300387, Peoples R China
关键词
Microbial fuel cell; Melamine; Metal-organic framework; C3N4-Doped active sites; Oxygen reduction reaction; ENHANCED PHOTOCATALYTIC ACTIVITY; OXYGEN REDUCTION REACTION; ACTIVATED CARBON; DOPED GRAPHENE; CATALYST; ELECTROCATALYSTS; HETEROJUNCTIONS; NANOSTRUCTURES; MECHANISM; FACETS;
D O I
10.1016/j.jpowsour.2018.10.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A highly active electrocatalyst is synthesized by employing melamine assisted metal-organic framework as the precursor. By pyrolyzing the hybrid at 350-800 degrees C, the precursor can be easily transferred into abundant iron and nitrogen co-doped carbon skeleton. The microbial fuel cell doped with the above treated sample at 600 degrees C achieves the maximum power density 2229 +/- 10 mW m(-2), 257% and 36.6% higher than that of activated carbon and the control sample. The total resistance decreases by 53.8% from 18.16 Omega (activated carbon) to 8.39 Omega. The reaction process is testified to be four-electron transfer. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy prove the coexistence of divalent copper and C3N4 and the incorporation of nitrogen into the network formed active sites. Thus, the ideal results make the pyrolyzed hybrid at 600 degrees C a promising catalyst in microbial fuel cell.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 50 条
  • [1] Porous metal-organic framework Cu3(BTC)2 as catalyst used in air-cathode for high performance of microbial fuel cell
    Tian, Pei
    Liu, Di
    Li, Kexun
    Yang, Tingting
    Wang, Junjie
    Liu, Yi
    Zhang, Song
    BIORESOURCE TECHNOLOGY, 2017, 244 : 206 - 212
  • [2] Metal organic framework-derived Co3O4/NiCo2O4 double-shelled nanocage modified activated carbon air-cathode for improving power generation in microbial fuel cell
    Zhang, Song
    Su, Wei
    Li, Kexun
    Liu, Di
    Wang, Junjie
    Tian, Pei
    JOURNAL OF POWER SOURCES, 2018, 396 : 355 - 362
  • [3] Cu, N-codoped carbon rod as an efficient electrocatalyst used in air-cathode for high performance of microbial fuel cells
    Zhong, Ming
    Ren, Chao
    Fang, Dezhi
    Lv, Cuicui
    Li, Kexun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 878
  • [4] Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell
    Zhang, Song
    Su, Wei
    Wang, Xiaojing
    Li, Kexun
    Li, Yong
    BIOSENSORS & BIOELECTRONICS, 2019, 127 : 181 - 187
  • [5] Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation
    Koo, Bonyoung
    Jung, Sokhee P.
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [6] Co2P embedded in nitrogen-doped carbon nanoframework derived from Co-based metal-organic framework as efficient oxygen reduction reaction electrocatalyst for enhanced performance of activated carbon air-cathode microbial fuel cell
    Lin, Zhiyuan
    Su, Wei
    Zhang, Song
    Zhang, Mingtao
    Li, Kexun
    Liu, Jia
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [7] Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode
    Modi, Akshay
    Singh, Shiv
    Verma, Nishith
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (05) : 3271 - 3280
  • [8] Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery
    Deng, Shu-Qi
    Zhuang, Zewen
    Zhou, Chuang -An
    Zheng, Hui
    Zheng, Sheng-Run
    Yan, Wei
    Zhang, Jiujun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 265 - 276
  • [9] The feasibility of typical metal-organic framework derived Fe, Co, N co-doped carbon as a robust electrocatalyst for oxygen reduction reaction in microbial fuel cell
    Xue, Wendan
    Zhou, Qixing
    Li, Fengxiang
    ELECTROCHIMICA ACTA, 2020, 355
  • [10] Fe-N-doped carbon nanoparticles from coal tar soot and its novel application as a high performance air-cathode catalyst for microbial fuel cells
    Zhang, Yudong
    Li, Jun
    Yang, Wei
    Zhang, Jun
    Fu, Qian
    Song, Yong-Chae
    Wei, Zidong
    Liao, Qiang
    Zhu, Xun
    ELECTROCHIMICA ACTA, 2020, 363