Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms

被引:54
|
作者
Zenda, Tinashe [1 ,2 ]
Liu, Songtao [1 ,2 ]
Wang, Xuan [1 ,2 ]
Jin, Hongyu [1 ,2 ]
Liu, Guo [1 ,2 ]
Duan, Huijun [1 ,2 ]
机构
[1] Hebei Agr Univ, Dept Crop Genet & Breeding, Coll Agron, Baoding 071001, Peoples R China
[2] Hebei Agr Univ, North China Key Lab Crop Germplasm Resources, Educ Minist, Baoding 071001, Peoples R China
关键词
proteome profiling; iTRAQ; differentially abundant proteins (DAPs); drought stress; physiological responses; Zea mays L; GLUTATHIONE-S-TRANSFERASE; STEROID-BINDING PROTEIN-1; ABIOTIC-STRESS; SALT-STRESS; FERREDOXIN/THIOREDOXIN SYSTEM; PROLINE METABOLISM; C-4; PHOTOSYNTHESIS; LIPID-PEROXIDATION; ANALYSIS REVEALS; WATER-DEFICIT;
D O I
10.3390/ijms19103225
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought stress is the major abiotic factor threatening maize (Zea mays L.) yield globally. Therefore, revealing the molecular mechanisms fundamental to drought tolerance in maize becomes imperative. Herein, we conducted a comprehensive comparative analysis of two maize inbred lines contrasting in drought stress tolerance based on their physiological and proteomic responses at the seedling stage. Our observations showed that divergent stress tolerance mechanisms exist between the two inbred-lines at physiological and proteomic levels, with YE8112 being comparatively more tolerant than MO17 owing to its maintenance of higher relative leaf water and proline contents, greater increase in peroxidase (POD) activity, along with decreased level of lipid peroxidation under stressed conditions. Using an iTRAQ (isobaric tags for relative and absolute quantification)-based method, we identified a total of 721 differentially abundant proteins (DAPs). Amongst these, we fished out five essential sets of drought responsive DAPs, including 13 DAPs specific to YE8112, 107 specific DAPs shared between drought-sensitive and drought-tolerant lines after drought treatment (SD_TD), three DAPs of YE8112 also regulated in SD_TD, 84 DAPs unique to MO17, and five overlapping DAPs between the two inbred lines. The most significantly enriched DAPs in YE8112 were associated with the photosynthesis antenna proteins pathway, whilst those in MO17 were related to C5-branched dibasic acid metabolism and RNA transport pathways. The changes in protein abundance were consistent with the observed physiological characterizations of the two inbred lines. Further, quantitative real-time polymerase chain reaction (qRT-PCR) analysis results confirmed the iTRAQ sequencing data. The higher drought tolerance of YE8112 was attributed to: activation of photosynthesis proteins involved in balancing light capture and utilization; enhanced lipid-metabolism; development of abiotic and biotic cross-tolerance mechanisms; increased cellular detoxification capacity; activation of chaperones that stabilize other proteins against drought-induced denaturation; and reduced synthesis of redundant proteins to help save energy to battle drought stress. These findings provide further insights into the molecular signatures underpinning maize drought stress tolerance.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms
    Dong, Anyi
    Yang, Yatong
    Liu, Songtao
    Zenda, Tinashe
    Liu, Xinyue
    Wang, Yafei
    Li, Jiao
    Duan, Huijun
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020, 34 (01) : 763 - 780
  • [2] Comparative Proteomic Analyses Provide New Insights into Low Phosphorus Stress Responses in Maize Leaves
    Zhang, Kewei
    Liu, Hanhan
    Tao, Peilin
    Chen, Huan
    PLOS ONE, 2014, 9 (05):
  • [3] Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots
    Zheng, Hongxiang
    Yang, Zhen
    Wang, Wenqing
    Guo, Shangjing
    Li, Zongxin
    Liu, Kaichang
    Sui, Na
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 149 : 11 - 26
  • [4] Screening and Physiological Responses of Maize Inbred Lines to Drought Stress in South China
    Zhang, Zhiqin
    Xie, Xiaodong
    Naseer, Muhammad Asad
    Zhou, Haiyu
    Cheng, Weidong
    Xie, Hexia
    Qin, Lanqiu
    Yang, Xiang
    Jiang, Yufeng
    Zhou, Xunbo
    SUSTAINABILITY, 2024, 16 (17)
  • [5] Evaluation of physiological characteristics as selection criteria for drought tolerance in maize inbred lines and their hybrids
    Dordas, Christos A.
    Papathanasiou, Fokion
    Lithourgidie, Anastasios
    Petrevska, Jovanka-Katarzyna
    Papadopoulos, Ioannis
    Pankou, Chrysanthi
    Gekas, Fotakis
    Ninou, Elissavet
    Mylonas, Ioannis
    Sistanis, Iossif
    Tzantarmae, Constantinos
    Kargiotidou, Anastasia
    Tokatlidie, Ioannis S.
    MAYDICA, 2018, 63 (02):
  • [6] Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties
    Hongjie Li
    Mei Yang
    Chengfeng Zhao
    Yifan Wang
    Renhe Zhang
    BMC Plant Biology, 21
  • [7] Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties
    Li, Hongjie
    Yang, Mei
    Zhao, Chengfeng
    Wang, Yifan
    Zhang, Renhe
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [8] Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines
    Zenda, Tinashe
    Liu, Songtao
    Wang, Xuan
    Liu, Guo
    Jin, Hongyu
    Dong, Anyi
    Yang, Yatong
    Duan, Huijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
  • [9] Combining Ability of Quality Protein Maize Inbred Lines for Seedling Tolerance to Drought Stress
    Pfunde, Cleopatra N.
    Mutengwa, Charles S.
    PHILIPPINE JOURNAL OF CROP SCIENCE, 2016, 41 (02): : 1 - 12
  • [10] Phenotypic evaluation of a set of selected exotic maize inbred lines for drought stress tolerance
    Dubey, Linu
    Prasanna, B. M.
    Hossain, Firoz
    Verma, D. K.
    Ramesh, B.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2010, 70 (04) : 355 - 362