Additivity and exponentiality are alien to each other

被引:18
作者
Ger, Roman [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
Additivity; exponentiality; alienation; quadratical equivalence; RING HOMOMORPHISMS; EQUATION;
D O I
10.1007/s00010-010-0012-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, +) be a (semi)group and let (R,+, .) be an integral domain. We study the solutions of a Pexider type functional equation f(x + y) + g(x + y) = f(x) + f(y) + g(x) g(y) for functions f and g mapping S into R. Our chief concern is to examine whether or not this functional equation is equivalent to the system of two Cauchy equations {f(x + y) = f(x) + f(y) g(x + y) = g(x) g(y) for every x, y is an element of S.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 8 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
[Anonymous], LECT FUNCTIONAL EQUA
[3]  
Dhombres J., 1988, Aequationes Math, V35, P186, DOI [10.1007/BF01830943, DOI 10.1007/BF01830943]
[4]  
Ger R, 1998, PUBL MATH-DEBRECEN, V52, P397
[5]  
GER R., 2000, ROCZNIK NAUK DYDAKT, P101
[6]   A generalized ring homomorphisms equation [J].
Ger, Roman ;
Reich, Ludwig .
MONATSHEFTE FUR MATHEMATIK, 2010, 159 (03) :225-233
[7]  
Kuczma M., 1985, An Introduction to the Theory of Functional Equations and Inequalities
[8]  
Cauchy's Equation and Jensen's Inequality