Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

被引:297
作者
Sun, Meng [1 ,3 ]
Liu, Huijuan [1 ]
Liu, Yang [2 ]
Qu, Jiuhui [1 ]
Li, Jinghong [2 ]
机构
[1] Chinese Acad Sci, Key Lab Drinking Water Sci & Technol, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China
[2] Tsinghua Univ, Beijing Key Lab Microanalyt Methods & Instrumenta, Dept Chem, Beijing 100084, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100085, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; ONE-POT SYNTHESIS; CARBON NANOTUBES; ELECTROCHEMICAL IMPEDANCE; ELECTROCATALYTIC ACTIVITY; FUNCTIONALIZED GRAPHENE; FACILE SYNTHESIS; EFFICIENT ELECTROCATALYST; COBALT OXIDE/GRAPHENE; MANGANESE OXIDES;
D O I
10.1039/c4nr05838k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.
引用
收藏
页码:1250 / 1269
页数:20
相关论文
共 141 条
[1]   Electro-fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes [J].
Ai, Zhihui ;
Xiao, Haiyan ;
Mei, Tao ;
Liu, Juan ;
Zhang, Lizhi ;
Deng, Kejian ;
Qiu, Jianrong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (31) :11929-11935
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   THERMAL HYDROGENATION OF DIAMOND SURFACES STUDIED BY DIFFUSE REFLECTANCE FOURIER-TRANSFORM INFRARED, TEMPERATURE-PROGRAMMED DESORPTION AND LASER RAMAN-SPECTROSCOPY [J].
ANDO, T ;
ISHII, M ;
KAMO, M ;
SATO, Y .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (11) :1783-1789
[4]   Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn3O4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen [J].
Bag, Sourav ;
Roy, Kanak ;
Gopinath, Chinnakonda S. ;
Raj, C. Retna .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) :2692-2699
[5]   THE ELECTROCATALYSIS OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (02) :290-302
[6]   A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment [J].
Chabot, Victor ;
Higgins, Drew ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1564-1596
[7]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[8]   Unique Role of Self-Assembled Monolayers in Carbon Nanomaterial-Based Field-Effect Transistors [J].
Chen, Hongliang ;
Guo, Xuefeng .
SMALL, 2013, 9 (08) :1144-1159
[9]   Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities [J].
Chen, Hongyu ;
Li, Yang ;
Zhang, Fengbao ;
Zhang, Guoliang ;
Fan, Xiaobin .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (44) :17658-17661
[10]   Nanostructured Polyaniline-Decorated Pt/C@PANI Core-Shell Catalyst with Enhanced Durability and Activity [J].
Chen, Siguo ;
Wei, Zidong ;
Qi, XueQiang ;
Dong, Lichun ;
Guo, Yu-Guo ;
Wan, Lijun ;
Shao, Zhigang ;
Li, Li .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (32) :13252-13255