Gronwall-OuIang-Type Integral Inequalities on Time Scales

被引:1
作者
Liu, Ailian [1 ,2 ]
Bohner, Martin [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Shandong Econ Univ, Sch Math & Stat, Jinan 250014, Peoples R China
关键词
Chain Rule; Integral Inequality; Discrete Analogue; Nonoscillatory Solution; Nonnegative Constant;
D O I
10.1155/2010/275826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present several Gronwall-OuIang-type integral inequalities on time scales. Firstly, an OuIang inequality on time scales is discussed. Then we extend the Gronwall-type inequalities to multiple integrals. Some special cases of our results contain continuous Gronwall-type inequalities and their discrete analogues. Several examples are included to illustrate our results at the end.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
AKINBOHNER E, 2005, J INEQUAL PURE APPL, V6
[2]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[3]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[4]  
CHEUNG WS, 2005, J INEQUAL APPL, P347
[5]   NEW GRONWALL-OU-IANG TYPE INTEGRAL INEQUALITIES AND THEIR APPLICATIONS [J].
Cho, Yeol Je ;
Kim, Young-Ho ;
Pecaric, Josip .
ANZIAM JOURNAL, 2008, 50 (01) :111-127
[6]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[7]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[8]   Some nonlinear dynamic inequalities on time scales [J].
Li, Wei Nian ;
Sheng, Weihong .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04) :545-554
[9]   Bounds for Certain New Integral Inequalities on Time Scales [J].
Li, Wei Nian .
ADVANCES IN DIFFERENCE EQUATIONS, 2009,
[10]  
Okrasinski W., 1980, Ann. Polon. Math, V37, P223