Complete synchronization and generalized synchronization of one-way coupled time-delay systems

被引:93
|
作者
Zhan, M [1 ]
Wang, XG
Gong, XF
Wei, GW
Lai, CH
机构
[1] Natl Univ Singapore, Temasek Labs, Singapore 119260, Singapore
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 03期
关键词
D O I
10.1103/PhysRevE.68.036208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The complete synchronization and generalized synchronization (GS) of one-way coupled time-delay systems are studied. We find that GS can be achieved by a single scalar signal, and its synchronization threshold for different delay times shows the parameter resonance effect, i.e., we can obtain stable synchronization at a smaller coupling if the delay time of the driven system is chosen such that it is in resonance with the driving system. Near chaos synchronization, the desynchronization dynamics displays periodic bursts with the period equal to the delay time of the driven system. These features can be easily applied to the recovery of time-delay systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Generalized Synchronization in One-Way Coupled Systems with Delays
    Plotnikova A.D.
    Moskalenko O.I.
    Plotnikova, A.D. (adkoloskova@gmail.com), 1600, Pleiades journals (84): : 70 - 72
  • [2] Complete chaotic synchronization in mutually coupled time-delay systems
    Landsman, Alexandra S.
    Schwartz, Ira B.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [3] Intermittency transition to generalized synchronization in coupled time-delay systems
    Senthilkumar, D. V.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [4] Delay or anticipatory synchronization in one-way coupled systems using variable delay with reset
    G AMBIKA
    R E Amritkar
    Pramana, 2011, 77 : 891 - 904
  • [5] Delay or anticipatory synchronization in one-way coupled systems using variable delay with reset
    Ambika, G.
    Amritkar, R. E.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 891 - 904
  • [6] A constructional method for generalized synchronization of coupled time-delay chaotic systems
    Xiang, Hui-fen
    Li, Gao-ping
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1849 - 1853
  • [7] Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems
    Suresh, R.
    Senthilkumar, D. V.
    Lakshmanan, M.
    Kurths, J.
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [8] Exact synchronization bound for coupled time-delay systems
    Senthilkumar, D. V.
    Pesquera, Luis
    Banerjee, Santo
    Ortin, Silvia
    Kurths, J.
    PHYSICAL REVIEW E, 2013, 87 (04):
  • [9] Synchronization of coupled time-delay systems: analytical estimations
    Pyragas, K.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (3-A):
  • [10] Synchronization of coupled time-delay systems: Analytical estimations
    Pyragas, K
    PHYSICAL REVIEW E, 1998, 58 (03) : 3067 - 3071