New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative

被引:5
作者
Zhang, Wei [1 ]
Zhang, Jifeng [1 ]
Ni, Jinbo [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
关键词
Lyapunov-type inequality; Hilfer-Katugampola fractional derivative; multi-point boundary condition; DIFFERENTIAL-EQUATION;
D O I
10.3934/math.2022064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present new Lyapunov-type inequalities for Hilfer-Katugampola fractional differential equations. We first give some unique properties of the Hilfer-Katugampola fractional derivative, and then by using these new properties we convert the multi-point boundary value problems of Hilfer-Katugampola fractional differential equations into the equivalent integral equations with corresponding Green's functions, respectively. Finally, we make use of the Banach's contraction principle to derive the desired results, and give a series of corollaries to show that the current results extend and enrich the previous results in the literature.
引用
收藏
页码:1074 / 1094
页数:21
相关论文
共 43 条
[41]   Hyers-Ulam Stability Results of Solutions for a Multi-Point φ-Riemann-Liouville Fractional Boundary Value Problem [J].
Ait Mohammed, Hicham ;
Mirgani, Safa M. ;
Tellab, Brahim ;
Amara, Abdelkader ;
Mezabia, Mohammed El-Hadi ;
Zennir, Khaled ;
Bouhali, Keltoum .
MATHEMATICS, 2025, 13 (09)
[42]   Existence and uniqueness of solution for Sturm-Liouville fractional differential equation with multi-point boundary condition via Caputo derivative [J].
El-Sayed, Ahmed M. A. ;
Gaafar, Fatma M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[43]   THE EXISTENCE OF POSITIVE SOLUTIONS AND A LYAPUNOV TYPE INEQUALITY FOR BOUNDARY VALUE PROBLEMS OF THE FRACTIONAL CAPUTO-FABRIZIO DIFFERENTIAL EQUATIONS [J].
Toprakseven, Suayip .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04) :1125-1133