Characterization of a Liner-on-Target Gas Injector for Staged Z-Pinch Experiments

被引:13
作者
Conti, F. [1 ]
Valenzuela, J. C. [1 ]
Aybar, N. [1 ]
Wessel, F. J. [2 ]
Ross, M. P. [1 ]
Narkis, J. [1 ]
Rahman, H. U. [3 ]
Ruskov, E. [3 ]
Beg, F. N. [1 ]
机构
[1] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[2] L Egant Solut LLC, Irvine, CA 92623 USA
[3] Magnetoinertial Fus Technol Inc, Tustin, CA 92780 USA
关键词
Density measurement; fluid dynamics; optical interferometry; plasma diagnostics; plasma measurements; Z-pinch; RAYLEIGH-TAYLOR INSTABILITY; DISTRIBUTIONS; VALVE;
D O I
10.1109/TPS.2018.2856748
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The staged Z-pinch (SZP) is a magnetoinertial fusion scheme, where a high-Z gas liner implodes onto a deuterium gas target. An accurate measurement of the initial mass distribution, both in the liner and target, is crucial to achieve the fusion-relevant conditions. This paper presents the characterization of a double-valve injector for the SZP experiment, performed on a test stand with interferometric and visible emission diagnostics. The injector produces an annular liner gas profile that is peaked at R-L = 1.25 cm, has an average full width at half-maximum Delta r(L) = 0.50 cm, and a mass density rho L = 0.5-140 mu g/cm(3), which is adjusted by selecting the gas species between Ar and Kr, plenum pressure, and injection timing. The target gas density is centered on the axis, has a width Delta r(T) = 0.80 cm, and a density rho(T) = 0.3-30 mu g/cm(3). The molecular deuterium can be partially ionized and accelerated out of the injector with a velocity v(z) > 2 cm/mu s by a coaxial plasma gun built into the injector.
引用
收藏
页码:3855 / 3863
页数:9
相关论文
共 33 条
[1]   Gas puff nozzle characterization using interferometric methods and numerical simulation [J].
Barnier, JN ;
Chevalier, JM ;
Dubroca, BD ;
Rouch, J .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (04) :1094-1100
[2]  
Bauer BS, 1997, AIP CONF PROC, P153
[3]   Suppression of the Rayleigh-Taylor instability through accretion [J].
Book, DL .
PHYSICS OF PLASMAS, 1996, 3 (01) :354-359
[4]  
Conti F., 2017, P IEEE 44 INT C PLAS
[5]   Characterization of the COBRA Triple-Nozzle Gas-Puff Valve Using Planar Laser Induced Fluorescence [J].
de Grouchy, P. W. L. ;
Rosenberg, E. ;
Qi, N. ;
Kusse, B. R. ;
Kroupp, E. ;
Fisher, A. ;
Maron, Y. ;
Hammer, D. A. .
9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES, 2014, 1639 :43-46
[6]  
Evans M., 2012, P IEEE 39 INT C PLAS, p1P
[7]  
Evans M., 2012, THESIS, P8
[8]   Proof-of-principle laser-induced fluorescence measurements of gas distributions from supersonic nozzles [J].
Failor, BH ;
Chantrenne, S ;
Coleman, PL ;
Levine, JS ;
Song, Y ;
Sze, HM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) :1070-1076
[9]   Determination of the mass distribution in a gas puff by laser induced fluorescence [J].
Garate, E ;
Song, YX ;
Fisher, A .
PPC-2003: 14TH IEEE INTERNATIONAL PULSED POWER CONFERENCE, VOLS 1 AND 2, DIGEST OF TECHNICAL PAPERS, 2003, :789-792
[10]   A Review of the Gas-Puff Z-Pinch as an X-Ray and Neutron Source [J].
Giuliani, John L. ;
Commisso, Robert J. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (08) :2385-2453