A QUANTITATIVE CENTRAL LIMIT THEOREM FOR THE EULER-POINCARE CHARACTERISTIC OF RANDOM SPHERICAL EIGENFUNCTIONS

被引:28
作者
Cammarota, Valentina [1 ]
Marinucci, Domenico [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
基金
欧洲研究理事会;
关键词
Euler-Poincare characteristic; Wiener-chaos expansion; spherical harmonics; quantitative central limit theorem; Gaussian kinematic formula; Berry's cancellation phenomenon; ARITHMETIC RANDOM WAVES; GAUSSIAN RANDOM-FIELDS; EXCURSION PROBABILITY; HARMONICS; FLUCTUATIONS; NUMBER;
D O I
10.1214/17-AOP1245
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish here a quantitative central limit theorem (in Wasserstein distance) for the Euler-Poincare characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler-Poincare characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level u is fully degenerate, that is, the Euler-Poincare characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. We discuss also a possible unifying framework for the Lipschitz-Killing curvatures of the excursion sets for Gaussian spherical harmonics.
引用
收藏
页码:3188 / 3228
页数:41
相关论文
共 33 条
[21]   Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on Sd [J].
Marinucci, Domenico ;
Rossi, Maurizia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) :2379-2420
[22]   On Nonlinear Functionals of Random Spherical Eigenfunctions [J].
Marinucci, Domenico ;
Wigman, Igor .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (03) :849-872
[23]   On the area of excursion sets of spherical Gaussian eigenfunctions [J].
Marinucci, Domenico ;
Wigman, Igor .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
[24]  
Nazarov F, 2009, AM J MATH, V131, P1337
[25]  
Nourdin I., 2012, CAMBRIDGE TRACTS MAT, V192
[26]  
PECCATI G., 2016, QUANTITATIVE LIMIT T
[27]  
Rossi M, 2015, THESIS
[28]  
SAMADDAR SN, 1974, MATH COMPUT, V28, P257
[29]  
SARNAK P., 2015, TOPOLOGIES NODAL SET
[30]   A Gaussian kinematic formula [J].
Taylor, JE .
ANNALS OF PROBABILITY, 2006, 34 (01) :122-158