A QUANTITATIVE CENTRAL LIMIT THEOREM FOR THE EULER-POINCARE CHARACTERISTIC OF RANDOM SPHERICAL EIGENFUNCTIONS

被引:28
作者
Cammarota, Valentina [1 ]
Marinucci, Domenico [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
基金
欧洲研究理事会;
关键词
Euler-Poincare characteristic; Wiener-chaos expansion; spherical harmonics; quantitative central limit theorem; Gaussian kinematic formula; Berry's cancellation phenomenon; ARITHMETIC RANDOM WAVES; GAUSSIAN RANDOM-FIELDS; EXCURSION PROBABILITY; HARMONICS; FLUCTUATIONS; NUMBER;
D O I
10.1214/17-AOP1245
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish here a quantitative central limit theorem (in Wasserstein distance) for the Euler-Poincare characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler-Poincare characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level u is fully degenerate, that is, the Euler-Poincare characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. We discuss also a possible unifying framework for the Lipschitz-Killing curvatures of the excursion sets for Gaussian spherical harmonics.
引用
收藏
页码:3188 / 3228
页数:41
相关论文
共 33 条
[1]   Topological Complexity of Smooth Random Functions Ecole d'Ete de Probabilites de Saint-Flour XXXIX-2009 Preface [J].
Adler, Robert J. ;
Taylor, Jonathan E. .
TOPOLOGICAL COMPLEXITY OF SMOOTH RANDOM FUNCTIONS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XXXIX - 2009, 2011, 2019 :V-+
[2]  
Adler Robert J., 2007, Random Fields and Geometry, DOI DOI 10.1007/978-0-387-48116-6
[3]  
Azai's JM., 2009, LEVEL SETS EXTREMA R
[4]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[5]   Fluctuations of the total number of critical points of random spherical harmonics [J].
Cammarota, V. ;
Wigman, I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (12) :3825-3869
[6]   FLUCTUATIONS OF THE EULER-POINCARE CHARACTERISTIC FOR RANDOM SPHERICAL HARMONICS [J].
Cammarota, V. ;
Marinucci, D. ;
Wigman, I. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) :4759-4775
[7]   On the Distribution of the Critical Values of Random Spherical Harmonics [J].
Cammarota, Valentina ;
Marinucci, Domenico ;
Wigman, Igor .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) :3252-3324
[8]   FIXED FREQUENCY EIGENFUNCTION IMMERSIONS AND SUPREMUM NORMS OF RANDOM WAVES [J].
Canzani, Yaiza ;
Hanin, Boris .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2015, 22 :76-86
[9]  
Chavel Isaac, 2006, CAMBRIDGE STUDIES AD, V98, DOI DOI 10.1017/CBO9780511616822
[10]   THE MEAN EULER CHARACTERISTIC AND EXCURSION PROBABILITY OF GAUSSIAN RANDOM FIELDS WITH STATIONARY INCREMENTS [J].
Cheng, Dan ;
Xiao, Yimin .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (02) :722-759