Covering the sphere by equal zones

被引:4
作者
Fodor, F. [1 ]
Vigh, V. [1 ]
Zarnocz, T. [1 ]
机构
[1] Univ Szeged, Bolyai Inst, Dept Geometry, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
covering; sphere; Tarski's plank problem; zone;
D O I
10.1007/s10474-016-0613-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A zone of half-width w on the unit sphere S (2) in Euclidean 3-space is the parallel domain of radius w of a great circle. L. Fejes Tth raised the following question in [6]: what is the minimal w (n) such that one can cover S (2) with n zones of half-width w (n) ? This question can be considered as a spherical relative of the famous plank problem of Tarski. We prove lower bounds for the minimum half-width w (n) for all n a parts per thousand 5.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 16 条
[1]  
Bezdek K., 2013, BOLYAI SOC MATH STUD, V24, P45
[2]   Arrangements of 14, 15, 16 and 17 points on a sphere [J].
Böröczky, K ;
Szabó, L .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (04) :407-421
[3]  
Boroczky K., 1983, STUD SCI MATH HUNG, V18, P165
[4]   FINITE POINT-SETS ON S2 WITH MINIMUM DISTANCE AS LARGE AS POSSIBLE [J].
DANZER, L .
DISCRETE MATHEMATICS, 1986, 60 :3-66
[5]  
Fejes L., 1943, JBER DTSCH MATH VERE, V53, P66
[6]  
Hars L., 1986, STUD SCI MATH HUNG, V21, P439
[7]  
Linhart J., 1974, ELEM MATH, V29, P57
[8]   The Tammes Problem for N=14 [J].
Musin, Oleg R. ;
Tarasov, Alexey S. .
EXPERIMENTAL MATHEMATICS, 2015, 24 (04) :460-468
[9]   The Strong Thirteen Spheres Problem [J].
Musin, Oleg R. ;
Tarasov, Alexey S. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (01) :128-141
[10]   ARRANGEMENT OF 24 POINTS ON A SPHERE [J].
ROBINSON, RM .
MATHEMATISCHE ANNALEN, 1961, 144 (01) :17-48