Speed invariant gait recognition-The enhanced mutual subspace method

被引:3
作者
Iwashita, Yumi [1 ,2 ]
Sakano, Hitoshi [3 ]
Kurazume, Ryo [2 ]
Stoica, Adrian [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
[2] Kyushu Univ, Fukuoka, Japan
[3] Shimane Univ, Matsue, Shimane, Japan
来源
PLOS ONE | 2021年 / 16卷 / 08期
关键词
2-DIMENSIONAL PCA; IMAGE; REPRESENTATION;
D O I
10.1371/journal.pone.0255927
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces an enhanced MSM (Mutual Subspace Method) methodology for gait recognition, to provide robustness to variations in walking speed. The enhanced MSM (eMSM) methodology expands and adapts the MSM, commonly used for face recognition, which is a static/physiological biometric, to gait recognition, which is a dynamic/behavioral biometrics. To address the loss of accuracy during calculation of the covariance matrix in the PCA step of MSM, we use a 2D PCA-based mutual subspace. Furhtermore, to enhance the discrimination capability, we rotate images over a number of angles, which enables us to extract richer gait features to then be fused by a boosting method. The eMSM methodology is evaluated on existing data sets which provide variable walking speed, i.e. CASIA-C and OU-ISIR gait databases, and it is shown to outperform state-of-the art methods. While the enhancement to MSM discussed in this paper uses combinations of 2D-PCA, rotation, boosting, other combinations of operations may also be advantageous.
引用
收藏
页数:21
相关论文
共 27 条
  • [1] [Anonymous], 2019, IEEE T CIRC SYST VID, DOI DOI 10.1109/TCSVT.2017.2760835
  • [2] [Anonymous], 1967, Computer and Information Science
  • [3] On Using Gait in Forensic Biometrics
    Bouchrika, Imed
    Goffredo, Michaela
    Carter, John
    Nixon, Mark
    [J]. JOURNAL OF FORENSIC SCIENCES, 2011, 56 (04) : 882 - 889
  • [4] Chatelin F, 1988, VELEURS PROPRES MATR
  • [5] A decision-theoretic generalization of on-line learning and an application to boosting
    Freund, Y
    Schapire, RE
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) : 119 - 139
  • [6] Guan Y, 2013, INT CONF BIOMETR
  • [7] Individual recognition using Gait Energy Image
    Han, J
    Bhanu, B
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) : 316 - 322
  • [8] Iwashita Yumi, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P2273, DOI 10.1109/ICRA.2017.7989261
  • [9] Gait Recognition Robust to Speed Transition Using Mutual Subspace Method
    Iwashita, Yumi
    Sakano, Hitoshi
    Kurazume, Ryo
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 141 - 149
  • [10] Iwashita Y, 2009, IEEE INT CONF ROBOT, P1926