COSIFER: a Python']Python package for the consensus inference of molecular interaction networks

被引:4
|
作者
Manica, Matteo [1 ,2 ]
Bunne, Charlotte [1 ,3 ]
Mathis, Roland [1 ]
Cadow, Joris [1 ]
Ahsen, Mehmet Eren [4 ]
Stolovitzky, Gustavo A. [4 ,5 ]
Martinez, Maria Rodriguez [1 ]
机构
[1] IBM Res Europe, Cognit Comp & Ind Solut, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Machine Learning, CH-8092 Zurich, Switzerland
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] IBM TJ Watson Res Ctr, Translat Syst Biol & Nanobiotechnol, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1093/bioinformatics/btaa942
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of high-throughput technologies has provided researchers with measurements of thousands of molecular entities and enable the investigation of the internal regulatory apparatus of the cell. However, network inference from high-throughput data is far from being a solved problem. While a plethora of different inference methods have been proposed, they often lead to non-overlapping predictions, and many of them lack user-friendly implementations to enable their broad utilization. Here, we present Consensus Interaction Network Inference Service (COSIFER), a package and a companion web-based platform to infer molecular networks from expression data using state-of-the-art consensus approaches. COSIFER includes a selection of state-of-the-art methodologies for network inference and different consensus strategies to integrate the predictions of individual methods and generate robust networks.
引用
收藏
页码:2070 / 2072
页数:3
相关论文
共 50 条
  • [1] NetPlotBrain: A Python']Python package for visualizing networks and brains
    Fanton, Silvia
    Thompson, William Hedley
    NETWORK NEUROSCIENCE, 2023, 7 (02) : 461 - 477
  • [2] PyBNesian: An extensible python']python package for Bayesian networks
    Atienza, David
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2022, 504 : 204 - 209
  • [3] MEANS: python']python package for Moment Expansion Approximation, iNference and Simulation
    Fan, Sisi
    Geissmann, Quentin
    Lakatos, Eszter
    Lukauskas, Saulius
    Ale, Angelique
    Babtie, Ann C.
    Kirk, Paul D. W.
    Stumpf, Michael P. H.
    BIOINFORMATICS, 2016, 32 (18) : 2863 - 2865
  • [4] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    SOFTWAREX, 2023, 21
  • [5] pysimm: A python']python package for simulation of molecular systems
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2017, 6 : 7 - 12
  • [6] MOFUN: a Python']Python package for molecular find and replace
    Boone, Paul
    Wilmer, Christopher E.
    DIGITAL DISCOVERY, 2022, 1 (05): : 679 - 688
  • [7] MolGraph: a Python']Python package for the implementation of molecular graphs and graph neural networks with TensorFlow and Keras
    Kensert, Alexander
    Desmet, Gert
    Cabooter, Deirdre
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2025, 39 (01)
  • [8] Pytim: A Python']Python Package for the Interfacial Analysis of Molecular Simulations
    Sega, Marcello
    Hantal, Gyoergy
    Fabian, Balazs
    Jedlovszky, Pal
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2118 - 2125
  • [9] CANA: A Python']Python Package for Quantifying Control and Canalization in Boolean Networks
    Correia, Rion B.
    Gates, Alexander J.
    Wang, Xuan
    Rocha, Luis M.
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [10] Transient simulations in water distribution networks: TSNet python']python package
    Xing, Lu
    Sela, Lina
    ADVANCES IN ENGINEERING SOFTWARE, 2020, 149