Charge collection microscopy of in-situ switchable PRAM line cells in a scanning electron microscope: Technique development and unique observations

被引:3
作者
Oosthoek, J. L. M. [1 ,2 ]
Schuitema, R. W. [1 ,2 ]
ten Brink, G. H. [1 ,2 ]
Gravesteijn, D. J. [3 ]
Kooi, B. J. [1 ,2 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Mat Innovat Inst M2i, NL-9747 AG Groningen, Netherlands
[3] NXP Semicond, B-3001 Leuven, Belgium
关键词
PHASE-CHANGE NANOWIRES; MEMORY TECHNOLOGY; MODE;
D O I
10.1063/1.4914104
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An imaging method has been developed based on charge collection in a scanning electron microscope (SEM) that allows discrimination between the amorphous and crystalline states of Phase-change Random Access Memory (PRAM) line cells. During imaging, the cells are electrically connected and can be switched between the states and the resistance can be measured. This allows for electrical characterization of the line cells in-situ in the SEM. Details on sample and measurement system requirements are provided which turned out to be crucial for the successful development of this method. Results show that the amorphous or crystalline state of the line cells can be readily discerned, but the spatial resolution is relatively poor. Nevertheless, it is still possible to estimate the length of the amorphous mark, and also for the first time, we could directly observe the shift of the amorphous mark from one side of the line cell to the other side when the polarity of the applied (50 ns) RESET pulse was reversed. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 21 条
[1]   Phase change memory technology [J].
Burr, Geoffrey W. ;
Breitwisch, Matthew J. ;
Franceschini, Michele ;
Garetto, Davide ;
Gopalakrishnan, Kailash ;
Jackson, Bryan ;
Kurdi, Buelent ;
Lam, Chung ;
Lastras, Luis A. ;
Padilla, Alvaro ;
Rajendran, Bipin ;
Raoux, Simone ;
Shenoy, Rohit S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02) :223-262
[2]  
Castro D. T., 2007, IEEE INT ELECT DEVIC, P315
[3]  
COLE EI, 1989, P 6 IEEE VLSI MULT I, P176
[4]   Overview of phase-change chalcogenide nonvolatile memory technology [J].
Hudgens, S ;
Johnson, B .
MRS BULLETIN, 2004, 29 (11) :829-832
[5]  
Joy D C., 1995, Monte Carlo Modeling for Electron Microscopy and Microanalysis
[6]   High-Resolution Transmission Electron Microscopy Study of Electrically-Driven Reversible Phase Change in Ge2Sb2Te5 Nanowires [J].
Jung, Yeonwoong ;
Nam, Sung-Wook ;
Agarwal, Ritesh .
NANO LETTERS, 2011, 11 (03) :1364-1368
[7]   Nanostructure-property relations for phase-change random access memory (PCRAM) line cells [J].
Kooi, B. J. ;
Oosthoek, J. L. M. ;
Verheijen, M. A. ;
Kaiser, M. ;
Jedema, F. J. ;
Gravesteijn, D. J. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (10) :1972-1977
[8]   Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials [J].
Kroezen, H. J. ;
Eising, G. ;
ten Brink, G. ;
Palasantzas, G. ;
Kooi, B. J. ;
Pauza, A. .
APPLIED PHYSICS LETTERS, 2012, 100 (09)
[9]   Low-cost and nanoscale non-volatile memory concept for future silicon chips [J].
Lankhorst, MHR ;
Ketelaars, BWSMM ;
Wolters, RAM .
NATURE MATERIALS, 2005, 4 (04) :347-352
[10]   CHARGE COLLECTION SCANNING ELECTRON-MICROSCOPY [J].
LEAMY, HJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (06) :R51-R80