Non-linear sliding mode surfaces for a class of underactuated mechanical systems

被引:20
作者
Lopez-Martinez, M. [1 ]
Acosta, J. A. [1 ]
Cano, J. M. [1 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingenieros, Dept Ingn Sistemas & Automat, Seville 41092, Spain
关键词
FLATNESS;
D O I
10.1049/iet-cta.2008.0583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a new non-linear sliding surface to control a class of non-minimum phase underactuated mechanical systems, taking into account uncertainties in their physical parameters. The non-linear surface is designed through a fictitious output, which provides the minimum-phase property and allows to prove stability using Lyapunov theory. The non-linear surface is based on the fictitious output and augmented with a non-linear external controller designed using the Lyapunov theory. The present approach assures exponential stability of the equilibrium point and robust stability to parametric uncertainties, avoiding the appearance of non-desired phenomena, as limit cycles. Two pendulum-like examples inside the class are thoroughly analysed and solved, that is, the pendulum on a cart and the inertia wheel pendulum. Performance, time response and parametric robustness are shown through simulations.
引用
收藏
页码:2195 / 2204
页数:10
相关论文
共 22 条
[1]  
ACOSTA JA, 2009, AUTOMATION CONTROL S, V2, P13
[2]  
AGRACHEV AA, 2004, LNM, V1932
[3]   ON ULTIMATE BOUNDEDNESS CONTROL OF UNCERTAIN SYSTEMS IN THE ABSENCE OF MATCHING ASSUMPTIONS [J].
BARMISH, BR ;
LEITMANN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) :153-158
[4]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[5]  
Brockett R.W., 1983, Differ. Geom. Control Theory, P181
[6]  
Fantoni I., 2012, Non-linear Control for Underactuated Mechanical Systems
[7]   FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES [J].
FLIESS, M ;
LEVINE, J ;
MARTIN, P ;
ROUCHON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) :1327-1361
[8]   A Lie-Backlund approach to equivalence and flatness of nonlinear systems [J].
Fliess, M ;
Lévine, J ;
Martin, P ;
Rouchon, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :922-937
[9]   Continuous-time linear predictive control and flatness: a module-theoretic setting with examples [J].
Fliess, M ;
Marquez, R .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (07) :606-623
[10]   A new swing-up law for the Furuta pendulum [J].
Gordillo, F ;
Acosta, JA ;
Aracil, J .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (08) :836-844