Single-Shell Carbon-Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction

被引:274
|
作者
Tavakkoli, Mohammad [1 ]
Kallio, Tanja [1 ]
Reynaud, Olivier [2 ]
Nasibulin, Albert G. [2 ,3 ]
Johans, Christoffer [1 ]
Sainio, Jani [2 ]
Jiang, Hua [2 ]
Kauppinen, Esko I. [2 ]
Laasonen, Kari [1 ,4 ]
机构
[1] Aalto Univ, Sch Chem Technol, Dept Chem, FI-00076 Aalto, Finland
[2] Aalto Univ, Sch Sci, Dept Appl Phys, FI-00076 Aalto, Finland
[3] Skolkovo Inst Sci & Technol, Skolkovo 143025, Russia
[4] Aalto Univ, COMP Ctr Excellence Computat Nanosci, FI-00076 Aalto, Finland
关键词
carbon nanotubes; electrocatalysis; hydrogen evolution reaction; iron nanoparticles; nonprecious metal catalysts; MOLYBDENUM CARBIDE; NANOTUBES; CATALYSTS; NANOSHEETS; GRAPHENE; DESIGN; ANODE;
D O I
10.1002/anie.201411450
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient hydrogen evolution reaction (HER) through effective and inexpensive electrocatalysts is a valuable approach for clean and renewable energy systems. Here, single-shell carbon-encapsulated iron nanoparticles (SCEINs) decorated on single-walled carbon nanotubes (SWNTs) are introduced as a novel highly active and durable non-noble-metal catalyst for the HER. This catalyst exhibits catalytic properties superior to previously studied nonprecious materials and comparable to those of platinum. The SCEIN/SWNT is synthesized by a novel fast and low-cost aerosol chemical vapor deposition method in a one-step synthesis. In SCEINs the single carbon layer does not prevent desired access of the reactants to the vicinity of the iron nanoparticles but protects the active metallic core from oxidation. This finding opens new avenues for utilizing active transition metals such as iron in a wide range of applications.
引用
收藏
页码:4535 / 4538
页数:4
相关论文
共 50 条
  • [1] Hydrogen Evolution Reaction on the Single-Shell Carbon-Encapsulated Iron Nanoparticle: A Density Functional Theory Insight
    Cipa-Karhu, Geraldine
    Pakkanen, Olli J.
    Laasonen, Kari
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (22): : 13569 - 13577
  • [2] Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction
    Jiajia Lu
    Shibin Yin
    Pei Kang Shen
    Electrochemical Energy Reviews, 2019, 2 : 105 - 127
  • [3] Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction
    Lu, Jiajia
    Yin, Shibin
    Shen, Pei Kang
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 105 - 127
  • [4] Hydrogen and Air Detonation (Deflagration) Synthesis of Carbon-Encapsulated Iron Nanoparticles
    Yan, H.
    Zhao, T.
    Li, X.
    Hun, Ch.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2015, 51 (04) : 495 - 501
  • [5] Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles
    H. Yan
    T. Zhao
    X. Li
    Ch. Hun
    Combustion, Explosion, and Shock Waves, 2015, 51 : 495 - 501
  • [6] Combustion synthesis route to carbon-encapsulated iron nanoparticles
    Bystrzejewski, Michal
    Huczko, Andrzej
    Lange, Hubert
    Cudzilo, Stanislaw
    Kicinski, Wojciech
    DIAMOND AND RELATED MATERIALS, 2007, 16 (02) : 225 - 228
  • [7] Green Synthesis of Thin Shell Carbon-Encapsulated Iron Nanoparticles via Hydrothermal Carbonization
    Calderon, B.
    Smith, F.
    Aracil, I.
    Fullana, A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06): : 7995 - 8002
  • [8] Continuous synthesis of controlled size carbon-encapsulated iron nanoparticles
    Bystrzejewski, M.
    Karoly, Z.
    Szepvoelgyi, J.
    Huczko, A.
    Lange, H.
    MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2408 - 2417
  • [9] Influence of Al on synthesis and properties of carbon-encapsulated iron nanoparticles
    Labedz, O.
    Grabias, A.
    Kaszuwara, W.
    Bystrzejewski, M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 603 : 230 - 238
  • [10] Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube
    Wang, Zhiwen
    Zhang, Suyun
    Lv, Xiaomeng
    Bai, Ji
    Yu, Weiting
    Liu, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 16478 - 16486