Bilinear auto-Backlund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves

被引:168
作者
Shen, Yuan
Tian, Bo [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Shallow water waves; (3+1)-dimensional generalized nonlinear evolution equation; Hirota method; Symbolic computation; Bilinear auto-Backlund transformation; Soliton solution;
D O I
10.1016/j.aml.2021.107301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Waves are seen in the atmosphere, oceans, etc. As one of the most common natural phenomena, water waves attract the attention of researchers. For the shallow water waves, a (3+1)-dimensional generalized nonlinear evolution equation is hereby investigated via the symbolic computation. Based on the Hirota method, we present three bilinear auto-Backlund transformations, along with some soliton solutions. Our results depend on the water-wave coefficients in that equation. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 20 条
  • [11] Hirota R, 2004, The Direct Method in Soliton Theory, V1st
  • [12] Lax pairs, infinite conservation laws, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation
    Jia, Ting-Ting
    Gao, Yi-Tian
    Yu, Xin
    Li, Liu-Qing
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 114
  • [13] The Impact of Rain on Ocean Surface Waves and Currents
    Laxague, Nathan J. M.
    Zappa, Christopher J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (07)
  • [14] Liu W, 2019, NONLINEAR DYNAM, V96, P2463, DOI 10.1007/s11071-019-04935-5
  • [15] Mixed lump-soliton solutions of the (3+1)-dimensional soliton equation
    Pu, JunCai
    Hu, HengChun
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 85 : 77 - 81
  • [16] Solitary-wave and new exact solutions for an extended (3+1)-dimensional Jimbo-Miwa-like equation
    Qi, Feng-Hua
    Huang, Ye-Hui
    Wang, Pan
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 100
  • [17] Method for solving hyperbolic systems with initial data on non-characteristic manifolds with applications to the shallow water wave equations
    Rybkin, Alexei
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 93 : 72 - 78
  • [18] Assimilation of significant wave height from distributed ocean wave sensors
    Smit, P. B.
    Houghton, I. A.
    Jordanova, K.
    Portwood, T.
    Shapiro, E.
    Clark, D.
    Sosa, M.
    Janssen, T. T.
    [J]. OCEAN MODELLING, 2021, 159
  • [19] New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions
    Wazwaz, Abdul-Majid
    Kaur, Lakhveer
    [J]. NONLINEAR DYNAMICS, 2019, 97 (01) : 83 - 94
  • [20] Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method
    Wazwaz, AM
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (12) : 2283 - 2293