Machine learning and quantum computing for reactive turbulence modeling and simulation

被引:4
|
作者
Givi, Peyman [1 ]
机构
[1] Univ Pittsburgh, Ctr Res Comp, Mech Engn & Petr Engn, Pittsburgh, PA 15261 USA
关键词
DISCRETE LOGARITHMS; COMPUTATION; ALGORITHMS; NETWORKS;
D O I
10.1016/j.mechrescom.2021.103759
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A perspective is given on some prospects of machine learning and quantum computing for modeling and simulation of turbulent reactive flows. This perspective is a more comprehensive and extended form of the 13th Elsevier Distinguished Lecture in Mechanics delivered by the author.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] A comparative study of machine learning models for predicting the state of reactive mixing
    Ahmmed, B.
    Mudunuru, M. K.
    Karra, S.
    James, S. C.
    Vesselinov, V. V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 432
  • [22] Scalability in Modeling and Simulation Systems for Multi-Agent, AI, and Machine Learning Applications
    Newton, Charles
    Singleton, John
    Copland, Cameron
    Kitchen, Sarah
    Hudack, Jeffrey
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [23] Quantum Machine Learning Applications in the Biomedical Domain: A Systematic Review
    Maheshwari, Danyal
    Garcia-Zapirain, Begonya
    Sierra-Sosa, Daniel
    IEEE ACCESS, 2022, 10 : 80463 - 80484
  • [24] Advances in artificial intelligence and machine learning for quantum communication applications
    Mafu, Mhlambululi
    IET QUANTUM COMMUNICATION, 2024, 5 (03): : 202 - 231
  • [25] Benefits of Open Quantum Systems for Quantum Machine Learning
    Olivera-Atencio, Maria Laura
    Lamata, Lucas
    Casado-Pascual, Jesus
    ADVANCED QUANTUM TECHNOLOGIES, 2023,
  • [26] Machine Learning: Quantum vs Classical
    Khan, Tariq M.
    Robles-Kelly, Antonio
    IEEE ACCESS, 2020, 8 : 219275 - 219294
  • [27] Quantum Loop Topography for Machine Learning
    Zhang, Yi
    Kim, Eun-Ah
    PHYSICAL REVIEW LETTERS, 2017, 118 (21)
  • [28] Quantum machine learning: a classical perspective
    Ciliberto, Carlo
    Herbster, Mark
    Ialongo, Alessandro Davide
    Pontil, Massimiliano
    Rocchetto, Andrea
    Severini, Simone
    Wossnig, Leonard
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [29] Quantum Machine Learning-An Overview
    Tychola, Kyriaki A.
    Kalampokas, Theofanis
    Papakostas, George A.
    ELECTRONICS, 2023, 12 (11)
  • [30] Simulation of adiabatic quantum computing for molecular ground states
    Kremenetski, Vladimir
    Mejuto-Zaera, Carlos
    Cotton, Stephen J.
    Tubman, Norm M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (23):