Encapsulating hollow Fe3O4 in intertwined N-doped carbon nanofibers for high-performance supercapacitors and sodium-ion batteries

被引:11
|
作者
Huang, Yingying [1 ]
Zhou, Jiawei [1 ]
Zhang, Yi [2 ]
Yan, Ling [3 ]
Bao, Shuo [1 ]
Yin, Yansheng [2 ]
Lu, Jinlin [1 ,2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Mat & Met, Anshan 114051, Peoples R China
[2] Guangzhou Maritime Univ, Res Ctr Corros & Eros Proc Control Equipment & Mat, Guangzhou 510725, Guangdong, Peoples R China
[3] State Key Lab Met Mat Marine Equipment & Applicat, Anshan 114021, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3O4; Carbon nanofibers; Encapsulated structure; Supercapacitors; Sodium-ion half cells; ANODE MATERIALS; GRAPHENE; NANOCOMPOSITE; NANOPARTICLES; NANOSHEETS; COMPOSITE; STRATEGY;
D O I
10.1016/j.jallcom.2022.165672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a promising electrode for energy storage, Fe3O4 has many intriguing advantages, such as a high specific capacity, low cost, low toxicity, wide potential window and environmental benignity. However, the multiphase changes of iron oxide during the charge and discharge process can give rise to a sharp decrease in its capacity. In addition, the low conductivity of Fe3O4 may hinder the charge transfer and ion diffusion during redox process. In order to solve the above issues, this study mainly attempts to design a nanocomposite of Fe3O4 encapsulated in intertwined N-doped carbon nanofibers (CNFs) via using electrospinning and hightemperature calcination. The sealed structure can efficiently relieve the volume effect of Fe3O4 and raise the stability of electrodes. While a 3-dimensional interconnected conductive network composed of CNFs can increase the electroconductibility of electrodes. At the same time, the N-doping increases active sites on the surface of CNFs, providing more space for ions and charges storage. Herein, different amounts of Fe3O4 are encapsulated in N-doped CNFs (Fe3O4-CNFs). Fe3O4-CNFs with 40 % content of Fe3O4 (4Fe3O4-CNFs) deliver splendid electrochemical performances for all-solid-state supercapacitors and sodium-ion batteries. The specific capacitance of 4Fe3O4-CNFs supercapacitor is 184.5 F g-1 and maintains 86.2 % of initial capacity at 2 A g-1 after 5000 times. Furthermore, 4Fe3O4-CNFs as the anode for the half cell vs. Na+/Na demonstrate a splendid specific capacity of 628.1 mAh g-1 at 0.02 A g-1 and can maintain 358.1 mA h g-1 after cycling for 200 laps at 500 mA g-1. Therefore, 4Fe3O4-CNFs can be widely used in energy storage. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries
    Li, Yao
    Meng, Qing
    Zhu, Shen-min
    Sun, Zeng-hui
    Yang, Hao
    Chen, Zhi-xin
    Zhu, Cheng-ling
    Guo, Zai-ping
    Zhang, Di
    DALTON TRANSACTIONS, 2015, 44 (10) : 4594 - 4600
  • [42] N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries
    Ding, Ranran
    Zhang, Jie
    Qi, Jie
    Li, Zhenhua
    Wang, Chengyang
    Chen, Mingming
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (16) : 13470 - 13478
  • [43] Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries
    Chen, Chen
    Lu, Yao
    Ge, Yeqian
    Zhu, Jiadeng
    Jiang, Han
    Li, Yongqiang
    Hu, Yi
    Zhang, Xiangwu
    ENERGY TECHNOLOGY, 2016, 4 (11) : 1440 - 1449
  • [44] Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors
    Sun, Qujiang
    Cao, Zhen
    Wang, Shaohua
    Sun, Lianshan
    Zhou, Lin
    Xue, Hongjin
    Wu, Yingqiang
    Cavallo, Luigi
    Wang, Limin
    Ming, Jun
    JOURNAL OF POWER SOURCES, 2020, 461
  • [45] Novel Bismuth Nanoflowers Encapsulated in N-Doped Carbon Frameworks as Superb Composite Anodes for High-Performance Sodium-Ion Batteries
    Wei, Shiwei
    Li, Wei
    Ma, Zizai
    Deng, Xiaoyang
    Li, Yongfeng
    Wang, Xiaoguang
    SMALL, 2023, 19 (46)
  • [46] Hybridizing Fe3O4 nanocrystals with nitrogen-doped carbon nanowires for high-performance supercapacitors
    Chen, Jizhang
    Chen, Qiongyu
    Xu, Junling
    Wong, Ching-Ping
    RSC ADVANCES, 2017, 7 (76) : 48039 - 48046
  • [47] Nanoarchitectured Fe3C@N-Doped C/FeVO4 as High-Performance Anode for Sodium-Ion Batteries
    Zhao, Jinghao
    Han, Wei
    Chen, Jing
    Meng, Yan
    Hao, Baoqin
    Liu, Xiaoxiao
    Wang, Tiantian
    Li, Xin
    SMALL, 2024, 20 (50)
  • [48] Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors
    Zhu, Shengming
    Dong, Xufeng
    Huang, Hao
    Qi, Min
    JOURNAL OF POWER SOURCES, 2020, 459
  • [49] Preparation of N-doped potassium-intercalated copper sulfide for high-performance potassium-ion and sodium-ion supercapacitors
    Tian, Fang
    Li, Hui
    Yao, Ranran
    Wu, Jiaxin
    Zhang, Sainan
    Yao, Decui
    Yang, Zibo
    JOURNAL OF POWER SOURCES, 2025, 635
  • [50] N-doped graphitic carbon coated Fe2O3 using dopamine as an anode material for sodium-ion batteries
    Song, Jungwook
    Maulana, Achmad Yanuar
    Kim, Hanah
    Yun, Boram
    Gim, Hyunjeong
    Jeong, Yuri
    An, Nahyun
    Futalan, Cybelle M.
    Kim, Jongsik
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921