Evaluation of CO2 Capture Using Aqueous Ammonia Solution in a Flexible Operation Scenario

被引:1
|
作者
Cormos, Ana-Maria [1 ]
Morar, Ancuta [1 ]
Dinca, Cristian [2 ]
机构
[1] Univ Babes Bolyai, Fac Chem & Chem Engn, 11 Arany Janos, RO-400028 Cluj Napoca, Romania
[2] Politehn Univ, Fac Power Engn, RO-060042 Bucharest, Romania
来源
PRES 2014, 17TH CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1-3 | 2014年 / 39卷
关键词
MASS-TRANSFER; ABSORPTION; ALKANOLAMINES; KINETICS;
D O I
10.3303/CET1439217
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide has the largest contribution to the greenhouse effect among all of the greenhouse gases and its emission levels have become a big concern in the last decades. Carbon Capture and Storage (CCS) technologies aim to curb CO2 emissions not only from the power generation but also from other energy-intensive sectors. Among the various approaches to separate CO2 from flue gas, the absorption-based CO2 capture technology is known to be the most practical method mainly due to its technical maturity and large gas treating capacity. The power plants are required to be operated in dynamic scenario, due to the timely variation of the grid demand. Dynamic simulation is a viable solution to identify any operational issue at transient conditions for the integration of CO2 capture into power plants. In this paper, a rigorous dynamic rate-based model for CO2 absorption using aqueous ammonia in a packed column has been developed. The main model equations are developed by applying the overall mass, component mass and energy balances for the liquid and vapour phases, respectively. The model also considers mass and heat transfer resistance in the liquid and gas phase, hydrodynamics and column properties of the whole absorption system. The kinetic model has significant impact on the simulation and analysis of absorber. The partial differential equations of model have been solved in Matlab/Simulink, the model has been validated with data collected from pilot plant, published in literature. The developed model is used to analyse the species concentration profile, temperature profile, mass transfer rate and coefficient in the gas and liquid phase along the packing height. In order to analyse the capability of the model to predict the effect of the operating conditions and the disturbances from the up-stream power plant on the CO2 capture plant operation a dynamic simulations were performed. Also, the evaluations of various operation conditions for optimization of technical indicators of CO2 capture were done.
引用
收藏
页码:1297 / +
页数:2
相关论文
共 50 条
  • [1] A comprehensive model for regeneration process of CO2 capture using aqueous ammonia solution
    Zhang, Minkai
    Guo, Yincheng
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 29 : 22 - 34
  • [2] Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor
    Ma Shuangchen
    Chen Gongda
    Zhu Sijie
    Han Tingting
    Yu Weijing
    APPLIED ENERGY, 2016, 162 : 354 - 362
  • [3] Kinetics of CO2 absorption in aqueous ammonia solution
    Qin, Feng
    Wang, Shujuan
    Hartono, Ardi
    Svendsen, Hallvard F.
    Chen, Changhe
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (05) : 729 - 738
  • [4] Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution
    Zhang, Minkai
    Guo, Yincheng
    APPLIED ENERGY, 2013, 111 : 142 - 152
  • [5] Potassium sarcosinate promoted aqueous ammonia solution for post-combustion capture of CO2
    Yang, Nan
    Xu, Dong Yao
    Yu, Hai
    Conway, William
    Maeder, Marcel
    Feron, Paul
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (04): : 555 - 567
  • [6] Process simulations of NH3 abatement system for large-scale CO2 capture using aqueous ammonia solution
    Zhang, Minkai
    Guo, Yincheng
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 : 114 - 127
  • [7] Quantitative Evaluation of the Aqueous-Ammonia Process for CO2 Capture Using Fundamental Data and Thermodynamic Analysis
    Mathias, Paul M.
    Reddy, Satish
    O'Connell, John P.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1227 - 1234
  • [8] Modeling and analysis of CO2 capture by aqueous ammonia plus piperazine blended solution in a spray column
    Xu, Yin
    Chen, Xiaole
    Zhao, Yongling
    Jin, Baosheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 267
  • [9] CO2 capture in aqueous ammonia solutions: a computational chemistry perspective
    Jackson, P.
    Beste, A.
    Attalla, M. I.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (47) : 16301 - 16311
  • [10] CO2 absorption kinetics in a CO2-free and partially loaded aqueous ammonia solution
    Kim, Gyo Hee
    Park, Sung Youl
    You, Jong Kyun
    Hong, Won Hi
    Kim, Jong-Nam
    Kim, Jong-Duk
    CHEMICAL ENGINEERING JOURNAL, 2014, 250 : 83 - 90