Adiabatic limit in the Ginzburg-Landau and Seiberg-Witten equations

被引:1
|
作者
Sergeev, A. G. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
PSEUDO-HOLOMORPHIC CURVES; SW; GR;
D O I
10.1134/S0081543810030181
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an adiabatic limit in (2 + 1)-dimensional hyperbolic Ginzburg-Landau equations and 4-dimensional symplectic Seiberg-Witten equations. In dimension 3 = 2+1 the limiting procedure establishes a correspondence between solutions of Ginzburg-Landau equations and adiabatic paths in the moduli space of static solutions, called vortices. The 4-dimensional adiabatic limit may be considered as a complexification of the (2+1)-dimensional procedure with time variable being "complexified." The adiabatic limit in dimension 4 = 2+2 establishes a correspondence between solutions of Seiberg-Witten equations and pseudoholomorphic paths in the moduli space of vortices.
引用
收藏
页码:230 / 239
页数:10
相关论文
共 50 条