PERSISTENCE OF UNIFORMLY HYPERBOLIC LOWER DIMENSIONAL INVARIANT TORI OF HAMILTONIAN SYSTEMS

被引:0
作者
Jiao, Lei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 05期
关键词
Invariant tori; KAM iteration; Hamiltonian systems; Uniform-hyperbolic; KAM THEOREM; SERIES;
D O I
10.11650/twjm/1500406014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the normally uniform-hyperbolic lower dimensional invariant tori of the un-perturbed system will persist under small perturbations. The proof is based on the theory of exponentially dichotomous linear systems and an improved KAM machinery adapted for the perturbations of angle dependent unperturbed parts.
引用
收藏
页码:1741 / 1762
页数:22
相关论文
共 50 条
[31]   On Invariant Tori with Prescribed Frequency in Hamiltonian Systems [J].
Zhang, Dongfeng ;
Xu, Junxiang ;
Wu, Hao .
ADVANCED NONLINEAR STUDIES, 2016, 16 (04) :719-735
[32]   Persistence of Invariant Tori in Integrable Hamiltonian Systems Under Almost Periodic Perturbations [J].
Peng Huang ;
Xiong Li .
Journal of Nonlinear Science, 2018, 28 :1865-1900
[33]   Persistence of Invariant Tori in Integrable Hamiltonian Systems Under Almost Periodic Perturbations [J].
Huang, Peng ;
Li, Xiong .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) :1865-1900
[34]   Persistence of Lower Dimensional Tori for a Class of Nearly Integrable Reversible Systems [J].
Wang, Xiaocai ;
Zhang, Dongfeng ;
Xu, Junxiang .
ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (02) :193-207
[35]   Persistence of Degenerate Lower Dimensional Invariant Tori in Reversible Systems with Bruno Non-degeneracy Conditions [J].
Xiaomei Yang ;
Junxiang Xu .
Qualitative Theory of Dynamical Systems, 2021, 20
[36]   On the Persistence of Lower-Dimensional Tori in Reversible Systems with Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations [J].
Wang, Xiaocai ;
Cao, Xiaofei .
ACTA APPLICANDAE MATHEMATICAE, 2021, 173 (01)
[37]   On the persistence of degenerate lower-dimensional tori in reversible systems [J].
Wang, Xiaocai ;
Xu, Junxiang ;
Zhang, Dongfeng .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :2311-2333
[38]   Degenerate lower-dimensional tori in Hamiltonian systems [J].
Han, Yuecai ;
Li, Yong ;
Yi, Yingfei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :670-691
[39]   Completely degenerate lower-dimensional invariant tori for Hamiltonian system [J].
Hu, Shengqing ;
Liu, Bin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) :7459-7480
[40]   A symplectic map and its application to the persistence of lower dimensional invariant tori [J].
Junxiang Xu ;
Jiangong You .
Science in China Series A: Mathematics, 2002, 45 (5) :598-603