Fatigue life prediction for concrete bridges using Bayesian network

被引:0
作者
Yuan, Ming [1 ]
Liu, Yun [2 ]
Yan, Donghuang [1 ]
Huang, Lian [1 ]
机构
[1] Changsha Univ Sci & Technol, Changsha, Peoples R China
[2] Hunan Commun Polytech, Changsha, Peoples R China
来源
BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, LIFE-CYCLE SUSTAINABILITY AND INNOVATIONS | 2021年
关键词
HIGH-CYCLE FATIGUE; SHEAR; GIRDERS; MODEL; BEHAVIOR;
D O I
10.1201/9780429279119-367
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A probabilistic fatigue life prediction framework for concrete bridges is proposed in this study. The proposed fatigue analysis framework combines the fatigue crack growth-based material life prediction model and a nonlinear structural analysis method. A Bayesian network is established to predict the fatigue life of a concrete bridge according to the proposed framework. The proposed methodology is demonstrated using an experimental example for fatigue life prediction of a concrete box-girder, and the ratio of the posterior predicted mean (updating time n=8) to the test value decreases to 33%similar to 1% in the current investigation.
引用
收藏
页码:2690 / 2696
页数:7
相关论文
共 50 条
  • [41] Distracted Driving Prediction Model Using a Bayesian Network Approach
    Samira, A.
    Mansoureh, J.
    Abdollah, D.
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2020: TRANSPORTATION SAFETY, 2020, : 212 - 221
  • [42] Multiaxial fatigue life prediction of composite materials
    Weng, Jingmeng
    Wen, Weidong
    Zhang, Hongjian
    CHINESE JOURNAL OF AERONAUTICS, 2017, 30 (03) : 1012 - 1020
  • [43] Multiaxial fatigue and life prediction of elastomeric components
    Zarrin-Ghalami, Touhid
    Fatemi, Ali
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 55 : 92 - 101
  • [44] Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing
    Abo-Elkhier, M.
    Hamada, A. A.
    El-Deen, A. Bahei
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 69 : 28 - 35
  • [45] Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network
    Barbosa, Joelton Fonseca
    Correia, Jose A. F. O.
    Freire Junior, R. C. S.
    De Jesus, Abilio M. P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 135
  • [46] Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size
    Wang, Qiang
    Zhang, Wei
    Jiang, Shan
    MATERIALS, 2015, 8 (10) : 7145 - 7160
  • [47] Prediction of Fatigue Life of Rubberized Asphalt Concrete Mixtures Containing Reclaimed Asphalt Pavement Using Artificial Neural Networks
    Xiao, Feipeng
    Amirkhanian, Serji
    Juang, C. Hsein
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2009, 21 (06) : 253 - 261
  • [48] In Situ Prediction of Metal Fatigue Life Using Frequency Change
    Mahmoudi, Ali
    Amooie, Mohammad A.
    Koottaparambil, Lijesh
    Khonsari, Michael M.
    METALS, 2023, 13 (10)
  • [49] Fatigue life prediction of cracked attachment lugs using XFEM
    Naderi, M.
    Iyyer, N.
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 77 : 186 - 193
  • [50] Prediction of fatigue life for multi-spot welded joints with different arrangements using different multiaxial fatigue criteria
    Esmaeili, F.
    Rahmani, A.
    Barzegar, S.
    Afkar, A.
    MATERIALS & DESIGN, 2015, 72 : 21 - 30