State, unknown input and uncertainty estimation for nonlinear systems using a Takagi-Sugeno model

被引:0
|
作者
Nagy-Kiss, Anca Maria [1 ]
Schutz, Georges [1 ]
Ragot, Jose [2 ]
机构
[1] Publ Res Ctr Henri Tudor, Adv Mat & Struct Dept, Modelling & Simulat Unit, L-1855 Luxembourg, Luxembourg
[2] Univ Lorraine, Dependabil & Syst Diag Team, Res Ctr Automat Control Nancy, F-54516 Vandoeuvre Les Nancy, France
来源
2014 EUROPEAN CONTROL CONFERENCE (ECC) | 2014年
关键词
FAULT-DETECTION; FUZZY-SYSTEMS; DESIGN; OBSERVER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper addresses a systematic procedure to deal with the state, unknown input and parameter uncertainty estimation for nonlinear time-varying systems. This is realized by designing a robust observer for dynamic nonlinear systems using a Takagi-Sugeno (T-S) multi-model (MM) approach with nonlinear outputs. The method applies the technique of descriptor systems by considering unknown inputs and parameter uncertainty as auxiliary state variables. This approach allows to apply the tools of the linear automatic to dynamic nonlinear systems by using the Linear Matrix Inequalities (LMI) optimization. The observer estimates the previous mentioned variables and minimizes the effect of external disturbances on the estimation error. The model uncertainties are included in the model in a polynomial way which allows to consider the model uncertainty estimation as a fault detection problem. The residual sensitivity to faults while maintaining robustness according to a noise signal is handled by H-infinity/H- approach.
引用
收藏
页码:1274 / 1280
页数:7
相关论文
共 50 条
  • [41] Vehicle dynamics and road geometry estimation using a Takagi-Sugeno fuzzy observer with unknown inputs
    Dahmani, H.
    Chadli, M.
    Rabhi, A.
    El Hajjaji, A.
    2011 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2011, : 272 - 277
  • [42] Robust actuator and sensor fault estimation for Takagi-Sugeno fuzzy systems under ellipsoidal bounding
    Witczak, Marcin
    Pazera, Marcin
    Kukurowski, Norbert
    Bravo Cruz, Teodulo Ivan
    Theilliol, Didier
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [43] Generalized Functional Observer for Descriptor Nonlinear Systems-A Takagi-Sugeno Approach
    Rios-Ruiz, C.
    Osorio-Gordillo, G. -L.
    Astorga-Zaragoza, C. -M.
    Darouach, M.
    Souley-Ali, H.
    Reyes-Reyes, J.
    PROCESSES, 2023, 11 (06)
  • [44] New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems
    Al-Hadithi, Basil M.
    Jimenez, Agustin
    Matia, Fernando
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2012, 33 (05) : 552 - 575
  • [45] Interval Estimation for Discrete-Time Takagi-Sugeno Fuzzy Nonlinear Systems With Parameter Uncertainties
    Wang, Zhenhua
    Zhang, Lanshuang
    Raissi, Tarek
    Shen, Yi
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (05) : 2639 - 2649
  • [46] Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs
    Zhong, Zhixiong
    Zhu, Yanzheng
    Ahn, Choon Ki
    ISA TRANSACTIONS, 2018, 78 : 31 - 38
  • [47] Choosing a Takagi-Sugeno model for improved performance
    Robles, Ruben
    Sala, Antonio
    Bernal, Miguel
    Gonzalez, Temoatzin
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [48] Fuzzy horizon group shift FIR filtering for nonlinear systems with Takagi-Sugeno model
    Pak, Jung Min
    Ahn, Choon Ki
    Lee, Chang Joo
    Shi, Peng
    Lim, Myo Taeg
    Song, Moon Kyou
    NEUROCOMPUTING, 2016, 174 : 1013 - 1020
  • [49] Dynamic Output Feedback Predictive Control for Nonlinear Systems Represented by a Takagi-Sugeno Model
    Ding, Baocang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (05) : 831 - 843
  • [50] Control Design of Nonlinear Networked Control Systems via Takagi-Sugeno Fuzzy Model
    Yoneyama, Jun
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1920 - 1926