Recurrent neural networks as optimal mesh refinement strategies

被引:21
作者
Bohn, Jan [1 ]
Feischl, Michael [2 ]
机构
[1] KIT, Inst Appl & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Adaptive mesh refinement; Neural networks; Optimal convergence; Partial differential equations; OPTIMAL CONVERGENCE-RATES; BOUNDARY-ELEMENT METHODS; FEM;
D O I
10.1016/j.camwa.2021.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that optimal mesh refinement algorithms for a large class of PDEs can be learned by a recurrent neural network with a fixed number of trainable parameters independent of the desired accuracy and the input size, i.e., number of elements of the mesh. This includes problems for which no optimal adaptive strategy is known yet. The proposed algorithm is problem independent in the sense that it only requires the current numerical approximation in order to optimally refine the mesh. Thus, the method is a provably optimal black-box mesh refinement tool for a wide variety of PDE problems.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 42 条
  • [11] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253
  • [12] Optimal adaptive nonconforming FEM for the Stokes problem
    Carstensen, Carsten
    Peterseim, Daniel
    Rabus, Hella
    [J]. NUMERISCHE MATHEMATIK, 2013, 123 (02) : 291 - 308
  • [13] THE ADAPTIVE NONCONFORMING FEM FOR THE PURE DISPLACEMENT PROBLEM IN LINEAR ELASTICITY IS OPTIMAL AND ROBUST
    Carstensen, Carsten
    Rabus, Hella
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1264 - 1283
  • [14] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [15] CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED FINITE ELEMENT METHODS
    Chen, Long
    Holst, Michael
    Xu, Jinchao
    [J]. MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 35 - 53
  • [16] Instance Optimality of the Adaptive Maximum Strategy
    Diening, Lars
    Kreuzer, Christian
    Stevenson, Rob
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) : 33 - 68
  • [17] ElHihi S, 1996, ADV NEUR IN, V8, P493
  • [18] ADAPTIVE FEM WITH OPTIMAL CONVERGENCE RATES FOR A CERTAIN CLASS OF NONSYMMETRIC AND POSSIBLY NONLINEAR PROBLEMS
    Feischl, M.
    Fuehrer, T.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 601 - 625
  • [19] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348
  • [20] OPTIMALITY OF A STANDARD ADAPTIVE FINITE ELEMENT METHOD FOR THE STOKES PROBLEM
    Feischl, Michael
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1124 - 1157