Recurrent neural networks as optimal mesh refinement strategies

被引:21
作者
Bohn, Jan [1 ]
Feischl, Michael [2 ]
机构
[1] KIT, Inst Appl & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Adaptive mesh refinement; Neural networks; Optimal convergence; Partial differential equations; OPTIMAL CONVERGENCE-RATES; BOUNDARY-ELEMENT METHODS; FEM;
D O I
10.1016/j.camwa.2021.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that optimal mesh refinement algorithms for a large class of PDEs can be learned by a recurrent neural network with a fixed number of trainable parameters independent of the desired accuracy and the input size, i.e., number of elements of the mesh. This includes problems for which no optimal adaptive strategy is known yet. The proposed algorithm is problem independent in the sense that it only requires the current numerical approximation in order to optimally refine the mesh. Thus, the method is a provably optimal black-box mesh refinement tool for a wide variety of PDE problems.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 42 条
  • [1] [Anonymous], 2013, Lecture Notes in Control and Inform. Sci.
  • [2] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [3] Speech synthesis from neural decoding of spoken sentences
    Anumanchipalli, Gopala K.
    Chartier, Josh
    Chang, Edward F.
    [J]. NATURE, 2019, 568 (7753) : 493 - +
  • [4] Aurada Markus, 2014, J COMPUT APPL MATH, V255, P481
  • [5] Beck Christian, ARXIV200300596
  • [6] QUASI-OPTIMALITY OF ADAPTIVE NONCONFORMING FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
    Becker, Roland
    Mao, Shipeng
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) : 970 - 991
  • [7] A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhongci
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4639 - 4659
  • [8] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [9] Binev Peter, 2002, APPROXIMATION CLASSE, V28, P391
  • [10] Counting symmetry classes of dissections of a convex regular polygon
    Bowman, Douglas
    Regev, Alon
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2014, 56 : 35 - 55