SIMULTANEOUS APPROXIMATION BY A CLASS OF BERNSTEIN-DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS

被引:61
作者
Gonska, Heiner [1 ]
Paltanea, Radu [2 ]
机构
[1] Univ Duisburg Essen, D-47048 Duisburg, Germany
[2] Transilvania Univ, RO-500036 Brasov, Romania
关键词
positive linear operator; Bernstein-type operator; genuine Bernstein-Durrmeyer operator; simultaneous approximation; degree of approximation; moduli of continuity; THEOREMS;
D O I
10.1007/s10587-010-0049-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given.
引用
收藏
页码:783 / 799
页数:17
相关论文
共 19 条
[11]   Characterization theorems for the approximation by a family of operators [J].
Mache, DH ;
Zhou, DX .
JOURNAL OF APPROXIMATION THEORY, 1996, 84 (02) :145-161
[12]   DEGREE OF APPROXIMATION BY LINEAR POSITIVE OPERATORS [J].
MOND, B .
JOURNAL OF APPROXIMATION THEORY, 1976, 18 (03) :304-306
[13]  
Paltanea R., 2004, Approximation theory using positive linear operators
[14]  
Paltanea R., 1983, BEBES BOLYAI U FACUL, V2, P101
[15]  
PALTANEA R, 1986, MATH REV ANAL NUMER, V15, P57
[16]  
Parvanov P. E., 1994, Math. Balkanica (N.S.), V8, P165
[17]  
Pltnea R, 2007, ANN TIBERIU POPOVICI, V5, P109
[18]  
Sauer T., 1994, Results Math, V26, P99, DOI [10.1007/BF03322291, DOI 10.1007/BF03322291]