SIMULTANEOUS APPROXIMATION BY A CLASS OF BERNSTEIN-DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS

被引:61
作者
Gonska, Heiner [1 ]
Paltanea, Radu [2 ]
机构
[1] Univ Duisburg Essen, D-47048 Duisburg, Germany
[2] Transilvania Univ, RO-500036 Brasov, Romania
关键词
positive linear operator; Bernstein-type operator; genuine Bernstein-Durrmeyer operator; simultaneous approximation; degree of approximation; moduli of continuity; THEOREMS;
D O I
10.1007/s10587-010-0049-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given.
引用
收藏
页码:783 / 799
页数:17
相关论文
共 19 条
[1]  
Berens Y., 1991, APPROXIMATION THEORY, P25
[2]  
Chen W., 1987, 5 CHIN C APPR THEOR
[3]   APPROXIMATION OF INTEGRABLE FUNCTIONS OVER [0,1] BY MODIFIED BERNSTEIN POLYNOMIALS [J].
DERRIENNIC, MM .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (04) :325-343
[4]  
DURRMEYER JL, 1967, THESIS FM U PARIS
[5]  
Gavrea I., 1996, Result. Math., V30, P55
[6]   On genuine Bernstein-Durrmeyer operators [J].
Gonska, Heiner ;
Kacso, Daniela ;
Rasa, Ioan .
RESULTS IN MATHEMATICS, 2007, 50 (3-4) :213-225
[7]   QUANTITATIVE KOROVKIN TYPE THEOREMS ON SIMULTANEOUS APPROXIMATION [J].
GONSKA, HH .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :419-433
[8]  
Goodman T.N.T., 1988, P C CONSTR THEOR FUN, P166
[9]  
KACSO D, 2006, THESIS U DUISBURG ES
[10]  
Lupas A, 1972, Die folge der betaoperatoren