Forecasts of Opportunity for Northern California Soil Moisture

被引:1
作者
Penland, Cecile [1 ]
Fowler, Megan D. [1 ,2 ,3 ]
Jackson, Darren L. [1 ,3 ]
Cifelli, Robert [1 ]
机构
[1] NOAA, ESRL, Phys Sci Lab, Boulder, CO 80305 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80305 USA
[3] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国海洋和大气管理局;
关键词
soil moisture; predictability; forecasts of opportunity; linear inverse modeling; California hydrology; SEA-SURFACE TEMPERATURES; OPTIMAL EXCITATION; MODEL; WEATHER; OSCILLATION; DYNAMICS; SPACE; PREDICTABILITY; VARIABILITY; PREDICTION;
D O I
10.3390/land10070713
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil moisture anomalies underpin a number of critical hydrological phenomena with socioeconomic consequences, yet systematic studies of soil moisture predictability are limited. Here, we use a data-adaptive technique, Linear Inverse Modeling, which has proved useful as an indication of predictability in other fields, to investigate the predictability of soil moisture in northern California. This approach yields a model of soil moisture at 10 stations in the region, with results that indicate the possibility of skillful forecasts at each for lead times of 1-2 weeks. An important advantage of this model is the a priori identification of forecasts of opportunity-conditions under which the model's forecasts may be expected to have particularly high skill. Given that forecast errors (and inversely, their skill) can be estimated in advance, these findings have the potential to greatly increase the utility of soil moisture forecasts for practical applications including drought and flood forecasting.
引用
收藏
页数:24
相关论文
共 62 条
  • [1] A Priori Identification of Skillful Extratropical Subseasonal Forecasts
    Albers, John R.
    Newman, Matthew
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (21) : 12527 - 12536
  • [2] Forecasting Pacific SSTs: Linear inverse model predictions of the PDO
    Alexander, Michael A.
    Matrosova, Ludmila
    Penland, Cecile
    Scott, James D.
    Chang, Ping
    [J]. JOURNAL OF CLIMATE, 2008, 21 (02) : 385 - 402
  • [3] U.S. Climate Reference Network Soil Moisture and Temperature Observations
    Bell, Jesse E.
    Palecki, Michael A.
    Baker, C. Bruce
    Collins, William G.
    Lawrimore, Jay H.
    Leeper, Ronald D.
    Hall, Mark E.
    Kochendorfer, John
    Meyers, Tilden P.
    Wilson, Tim
    Diamond, Howard J.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) : 977 - 988
  • [4] BORGES MD, 1992, J ATMOS SCI, V49, P335, DOI 10.1175/1520-0469(1992)049<0335:BIAOPO>2.0.CO
  • [5] 2
  • [6] Space-time modeling of soil moisture
    Chen, Zijuan
    Mohanty, Binayak P.
    Rodriguez-Iturbe, Ignacio
    [J]. ADVANCES IN WATER RESOURCES, 2017, 109 : 343 - 354
  • [7] Cosgrove B, 2018, USGS NATL HYDROGR DA, V17, P4
  • [8] A Multi-Scale Soil Moisture Monitoring Strategy for California: Design and Validation
    Curtis, Jennifer A.
    Flint, Lorraine E.
    Stern, Michelle A.
    [J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2019, 55 (03): : 740 - 758
  • [9] Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States
    Dirmeyer, Paul A.
    Wu, Jiexia
    Norton, Holly E.
    Dorigo, Wouter A.
    Quiring, Steven M.
    Ford, Trenton W.
    Santanello, Joseph A., Jr.
    Bosilovich, Michael G.
    Ek, Michael B.
    Koster, Randal D.
    Balsamo, Gianpaolo
    Lawrence, David M.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (04) : 1049 - 1067
  • [10] A minimal probabilistic model for soil moisture in seasonally dry climates
    Dralle, David N.
    Thompson, Sally E.
    [J]. WATER RESOURCES RESEARCH, 2016, 52 (02) : 1507 - 1517