Azimuthally polarized spatial dark solitons: Exact solutions of Maxwell's equations in a Kerr medium

被引:59
|
作者
Ciattoni, A [1 ]
Crosignani, B
Di Porto, P
Yariv, A
机构
[1] Univ Aquila, Ist Nazl Fis Mat, I-67010 Laquila, Italy
[2] Univ Aquila, Dipartimento Fis, I-67010 Laquila, Italy
[3] Univ Roma La Sapienza, Ist Nazl Fis Mat, I-00185 Rome, Italy
[4] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.94.073902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spatial Kerr solitons, typically associated with the standard paraxial nonlinear Schrodinger equation, are shown to exist to all nonparaxial orders as exact solutions of Maxwell's equations in the presence of the vectorial Kerr effect. More precisely, we prove the existence of azimuthally polarized, spatial, dark soliton solutions of Maxwell's equations, while exact linearly polarized (2 + 1)D solitons do not exist. Our ab initio approach predicts the existence of dark solitons up to an upper value of the maximum field amplitude, corresponding to a minimum soliton width of about one-fourth of the wavelength.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] CLASS OF EXACT SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS
    GAUTREAU, R
    HOFFMAN, RB
    PHYSICAL REVIEW D, 1970, 2 (02): : 271 - &
  • [32] Global Solutions to Maxwell Equations in a Ferromagnetic Medium
    J.L. Joly
    G. Métivier
    J. Rauch
    Annales Henri Poincaré, 2000, 1 : 307 - 340
  • [33] Transforming higher order bright and dark solitons to the first order solitons in Kerr medium: A review
    Hesami, Majid
    Avazpour, Mahrokh
    Mendez Otero, M. M.
    OPTIK, 2020, 202
  • [34] Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium: addendum
    Tseng, SH
    Greene, JH
    Taflove, A
    Maitland, D
    Backman, V
    Walsh, JT
    OPTICS LETTERS, 2005, 30 (01) : 56 - 57
  • [35] Lasing conditions for polarized medium and a free electron lasing using Maxwell's equations
    Abdalgadir, L. M.
    Mahmoud, HassabAlla M. A.
    OPTIK, 2023, 272
  • [36] Exact solutions for bright and dark solitons in spatially inhomogeneous nonlinearity
    Xie, Qiongtao
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2014, 12 (12): : 830 - 835
  • [37] Exact Internal Controllability of Maxwell's Equations
    X. Zhang
    Applied Mathematics and Optimization, 2000, 41 : 155 - 170
  • [38] Exact internal controllability of Maxwell's equations
    Zhou Q.
    Japan Journal of Industrial and Applied Mathematics, 1997, 14 (2) : 245 - 256
  • [39] Exact controllability and stabilization of Maxwell's equations
    Phung, KD
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (02): : 169 - 174
  • [40] Exact internal controllability of Maxwell's equations"
    Zhang, X
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (02): : 155 - 170