Azimuthally polarized spatial dark solitons: Exact solutions of Maxwell's equations in a Kerr medium

被引:59
|
作者
Ciattoni, A [1 ]
Crosignani, B
Di Porto, P
Yariv, A
机构
[1] Univ Aquila, Ist Nazl Fis Mat, I-67010 Laquila, Italy
[2] Univ Aquila, Dipartimento Fis, I-67010 Laquila, Italy
[3] Univ Roma La Sapienza, Ist Nazl Fis Mat, I-00185 Rome, Italy
[4] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.94.073902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spatial Kerr solitons, typically associated with the standard paraxial nonlinear Schrodinger equation, are shown to exist to all nonparaxial orders as exact solutions of Maxwell's equations in the presence of the vectorial Kerr effect. More precisely, we prove the existence of azimuthally polarized, spatial, dark soliton solutions of Maxwell's equations, while exact linearly polarized (2 + 1)D solitons do not exist. Our ab initio approach predicts the existence of dark solitons up to an upper value of the maximum field amplitude, corresponding to a minimum soliton width of about one-fourth of the wavelength.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Perfect optical solitons: spatial Kerr solitons as exact solutions of Maxwell's equations
    Ciattoni, A
    Crosignani, B
    Di Porto, P
    Yariv, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (07) : 1384 - 1394
  • [2] “Exact” Solutions for Circularly Polarized Solitons and Vortices in a Kerr Medium
    V. P. Ruban
    JETP Letters, 2025, 121 (5) : 354 - 359
  • [3] Azimuthally polarized hollow beams in free space: Exact vector solutions to Maxwell's equations
    Huang, Liubing
    Hellwarth, Robert W.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [4] Polarized dark solitons in isotropic Kerr media
    Sheppard, AP
    Kivshar, YS
    PHYSICAL REVIEW E, 1997, 55 (04): : 4773 - 4782
  • [5] Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium
    V. V. Pukhnachev
    Journal of Applied Mechanics and Technical Physics, 2009, 50 : 181 - 187
  • [6] Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium
    Pukhnachev, V. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2009, 50 (02) : 181 - 187
  • [7] Exact Axisymmetric Solutions of the Maxwell Equations in a Nonlinear Nondispersive Medium
    Petrov, E. Yu.
    Kudrin, A. V.
    PHYSICAL REVIEW LETTERS, 2010, 104 (19)
  • [8] On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium
    Meleshko, S. V.
    Moshkin, N. P.
    Pukhnachev, V. V.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 105 : 152 - 157
  • [9] MAXWELL EQUATIONS IN A NONLINEAR KERR MEDIUM
    BRUNO, OP
    REITICH, F
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 447 (1929): : 65 - 76
  • [10] GENERAL SOLUTION OF MAXWELL EQUATIONS FOR AN AZIMUTHALLY MAGNETIZED FERRITE MEDIUM
    MESHCHERYAKOV, VA
    MUDROV, AE
    REDKIN, GA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (04): : 104 - 106