Regenerative Approaches in Huntington's Disease: From Mechanistic Insights to Therapeutic Protocols

被引:8
作者
Sassone, Jenny [1 ,2 ]
Papadimitriou, Elsa [3 ]
Thomaidou, Dimitra [3 ]
机构
[1] Univ Vita Salute San Raffaele, Milan, Italy
[2] Ist Sci San Raffaele, Milan, Italy
[3] Hellenic Pasteur Inst, Dept Neurobiol, Athens, Greece
关键词
Huntington's disease; iPCs; direct reprogramming; neuroprotection; in vivo reprogramming; miRNAs; PLURIPOTENT STEM-CELLS; IN-VIVO; MOUSE MODEL; PROMOTES NEUROGENESIS; GENE-TRANSCRIPTION; FUNCTIONAL-NEURONS; MEDIATED DELIVERY; DIRECT CONVERSION; TRANSGENIC MICE; NG2; GLIA;
D O I
10.3389/fnins.2018.00800
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Huntington's Disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the exon-1 of the IT15 gene encoding the protein Huntingtin. Expression of mutated Huntingtin in humans leads to dysfunction and ultimately degeneration of selected neuronal populations of the striatum and cerebral cortex. Current available HD therapy relies on drugs to treat chorea and control psychiatric symptoms, however, no therapy has been proven to slow down disease progression or prevent disease onset. Thus, although 24 years have passed since HD gene identification, HD remains a relentless progressive disease characterized by cognitive dysfunction and motor disability that leads to death of the majority of patients, on average 10-20 years after its onset. Up to now several molecular pathways have been implicated in the process of neurodegeneration involved in HD and have provided potential therapeutic targets. Based on these data, approaches currently under investigation for HD therapy aim on the one hand at getting insight into the mechanisms of disease progression in a human-based context and on the other hand at silencing mHTT expression by using antisense oligonucleotides. An innovative and still poorly investigated approach is to identify new factors that increase neurogenesis and/or induce reprogramming of endogenous neuroblasts and parenchymal astrocytes to generate new healthy neurons to replace lost ones and/or enforce neuroprotection of pre-existent striatal and cortical neurons. Here, we review studies that use human disease-in-a-dish models to recapitulate HD pathogenesis or are focused on promoting in vivo neurogenesis of endogenous striatal neuroblasts and direct neuronal reprogramming of parenchymal astrocytes, which combined with neuroprotective protocols bear the potential to re-establish brain homeostasis lost in HD.
引用
收藏
页数:8
相关论文
共 72 条
[1]   hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model [J].
Adil, Maroof M. ;
Gaj, Thomas ;
Rao, Antara T. ;
Kulkarni, Rishikesh U. ;
Fuentes, Christina M. ;
Ramadoss, Gokul N. ;
Ekman, Freja K. ;
Miller, Evan W. ;
Schaffer, David V. .
STEM CELL REPORTS, 2018, 10 (05) :1481-1491
[2]   Activin A directs striatal projection neuron differentiation of human pluripotent stem cells [J].
Arber, Charles ;
Precious, Sophie V. ;
Cambray, Serafi ;
Risner-Janiczek, Jessica R. ;
Kelly, Claire ;
Noakes, Zoe ;
Fjodorova, Marija ;
Heuer, Andreas ;
Ungless, Mark A. ;
Rodriguez, Tristan A. ;
Rosser, Anne E. ;
Dunnett, Stephen B. ;
Li, Meng .
DEVELOPMENT, 2015, 142 (07) :1375-1386
[3]   Intracellular Cholesterol Trafficking and Impact in Neurodegeneration [J].
Arenas, Fabian ;
Garcia-Ruiz, Carmen ;
Fernandez-Checa, Jose C. .
FRONTIERS IN MOLECULAR NEUROSCIENCE, 2017, 10
[4]  
BEAL MF, 1991, J NEUROSCI, V11, P1649
[5]   CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease [J].
Boussicault, Lydie ;
Alves, Sandro ;
Lamaziere, Antonin ;
Planques, Anabelle ;
Heck, Nicolas ;
Moumne, Lara ;
Despres, Gaetan ;
Bolte, Susanne ;
Hu, Amelie ;
Pages, Christiane ;
Galvan, Laurie ;
Piguet, Francoise ;
Aubourg, Patrick ;
Cartier, Nathalie ;
Caboche, Jocelyne ;
Betuing, Sandrine .
BRAIN, 2016, 139 :953-970
[6]   Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons [J].
Carri, Alessia Delli ;
Onorati, Marco ;
Lelos, Mariah J. ;
Castiglioni, Valentina ;
Faedo, Andrea ;
Menon, Ramesh ;
Camnasio, Stefano ;
Vuono, Romina ;
Spaiardi, Paolo ;
Talpo, Francesca ;
Toselli, Mauro ;
Martino, Gianvito ;
Barker, Roger A. ;
Dunnett, Stephen B. ;
Biella, Gerardo ;
Cattaneo, Elena .
DEVELOPMENT, 2013, 140 (02) :301-312
[7]   Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model [J].
Cervo, Pia Rivetti di Val ;
Romanov, Roman A. ;
Spigolon, Giada ;
Masini, Debora ;
Martin-Montanez, Elisa ;
Toledo, Enrique M. ;
La Manno, Gioele ;
Feyder, Michael ;
Pifl, Christian ;
Ng, Yi-Han ;
Sanchez, Sara Padrell ;
Linnarsson, Sten ;
Wernig, Marius ;
Harkany, Tibor ;
Fisone, Gilberto ;
Arenas, Ernest .
NATURE BIOTECHNOLOGY, 2017, 35 (05) :444-+
[8]   High Throughput Screening for Inhibitors of REST in Neural Derivatives of Human Embryonic Stem Cells Reveals a Chemical Compound that Promotes Expression of Neuronal Genes [J].
Charbord, Jeremie ;
Poydenot, Pauline ;
Bonnefond, Caroline ;
Feyeux, Maxime ;
Casagrande, Fabrice ;
Brinon, Benjamin ;
Francelle, Laetitia ;
Auregan, Gwenaelle ;
Guillermier, Martine ;
Cailleret, Michel ;
Viegas, Pedro ;
Nicoleau, Camille ;
Martinat, Cecile ;
Brouillet, Emmanuel ;
Cattaneo, Elena ;
Peschanski, Marc ;
Lechuga, Marc ;
Perrier, Anselme L. .
STEM CELLS, 2013, 31 (09) :1816-1828
[9]   PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease [J].
Chiang, Ming-Chang ;
Chern, Yijuang ;
Huang, Rong-Nan .
NEUROBIOLOGY OF DISEASE, 2012, 45 (01) :322-328
[10]   Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease [J].
Cho, Sung-Rae ;
Benraiss, Abdellatif ;
Chmielnicki, Eva ;
Samdani, Amer ;
Economides, Aris ;
Goldman, Steven A. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (10) :2889-2902