Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

被引:24
作者
Kusior, A. [1 ]
Kollbek, K. [2 ]
Kowalski, K. [3 ]
Borysiewicz, M. [4 ]
Wojciechowski, T. [5 ]
Adamczyk, A. [1 ]
Trenczek-Zajac, A. [1 ]
Radecka, M. [1 ]
Zakrzewska, K. [6 ]
机构
[1] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, Acad Ctr Mat & Nanotechnol, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Inst Electr Mat Technol, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[5] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[6] AGH Univ Sci & Technol, Fac Comp Sci Elect & Telecommun, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Inert Gas Condensation; TiO2; nanoflowers; Cu nanoclusters; SnO2; nanoparticles; PHOTOELECTROCHEMICAL CELLS; HETEROJUNCTIONS; PHOTOCATALYSTS; NANOCOMPOSITES; NANOSTRUCTURES; GENERATION; SCIENCE; RAMAN;
D O I
10.1016/j.apsusc.2016.01.204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 32 条
  • [1] Size-controlled Pd nanocluster grown by plasma gas-condensation method
    Ayesh, A. I.
    Thaker, S.
    Qamhieh, N.
    Ghamlouche, H.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (03) : 1125 - 1131
  • [2] Cassidy C., 2013, SCI REP, V3, P1
  • [3] The surface science of titanium dioxide
    Diebold, U
    [J]. SURFACE SCIENCE REPORTS, 2003, 48 (5-8) : 53 - 229
  • [4] On the formation of copper nanoparticles in nanocluster aggregation source
    Dutka, Mikhail V.
    Turkin, Anatoliy A.
    Vainchtein, David I.
    De Hosson, Jeff Th. M.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (03):
  • [5] Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
    Gracia-Pinilla, M. A.
    Martinez, E.
    Silva Vidaurri, G.
    Perez-Tijerina, E.
    [J]. NANOSCALE RESEARCH LETTERS, 2010, 5 (01): : 180 - 188
  • [6] THE PRODUCTION OF NANOCRYSTALLINE POWDERS BY MAGNETRON SPUTTERING
    HAHN, H
    AVERBACK, RS
    [J]. JOURNAL OF APPLIED PHYSICS, 1990, 67 (02) : 1113 - 1115
  • [7] Experimental and theoretical studies on noble metal decorated tin oxide flower-like nanorods with high ethanol sensing performance
    Kaneti, Yusuf V.
    Yue, Jeffrey
    Moriceau, Julien
    Chen, Chuyang
    Liu, Minsu
    Yuan, Yuan
    Jiang, Xuchuan
    Yu, Aibing
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2015, 219 : 83 - 93
  • [8] Decoration of Co nanoparticles on ZnO-branched SnO2 nanowires to enhance gas sensing
    Kim, Hyoun Woo
    Na, Han Gil
    Kwon, Yong Jung
    Cho, Hong Yeon
    Lee, Chongmu
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2015, 219 : 22 - 29
  • [9] Sensitization of TiO2/SnO2 nanocomposites for gas detection
    Kusior, A.
    Radecka, M.
    Zych, L.
    Zakrzewska, K.
    Reszka, A.
    Kowalski, B. J.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2013, 189 : 251 - 259
  • [10] TiO2-SnO2 nanomaterials for gas sensing and photocatalysis
    Kusior, A.
    Klich-Kafel, J.
    Trenczek-Zajac, A.
    Swierczek, K.
    Radecka, M.
    Zakrzewska, K.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (12) : 2285 - 2290