Concavity properties of solutions to Robin problems

被引:0
作者
Crasta, Graziano [1 ]
Fragala, Ilaria [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, Italy
[2] Dipartimento Matemat, Piazza Leonardo da VInci 32, I-20133 Milan, Italy
关键词
Robin boundary conditions; eigenfunctions; torsion function; concavity; CONVEX SOLUTIONS; ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; BOUNDARY; EIGENFUNCTIONS; EIGENVALUES; MINKOWSKI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Robin ground state and the Robin torsion function are respectively log-concave and 1/2-concave on an uniformly convex domain Omega subset of R-N of class (Cm), with [m - N/2] >= 4, provided the Robin parameter exceeds a critical threshold. Such threshold depends on N, m, and on the geometry of Omega, precisely on the diameter and on the boundary curvatures up to order m.
引用
收藏
页码:177 / 212
页数:36
相关论文
共 50 条
  • [1] Non-concavity of the Robin ground state
    Andrews, Ben
    Clutterbuck, Julie
    Hauer, Daniel
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2020, 8 (02) : 243 - 310
  • [2] Parabolic quasi-concavity for solutions to parabolic problems in convex rings
    Ishige, Kazuhiro
    Salani, Paolo
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (11) : 1526 - 1548
  • [3] Positive solutions for nonvariational Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ASYMPTOTIC ANALYSIS, 2018, 108 (04) : 243 - 255
  • [4] Concavity properties for elliptic free boundary problems
    Bianchini, Chiara
    Salani, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4461 - 4470
  • [5] Multiple solutions for strongly resonant Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (07) : 1147 - 1167
  • [6] MULTIPLICITY OF SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 601 - 611
  • [7] POSITIVE SOLUTIONS OF NONLINEAR ROBIN EIGENVALUE PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4913 - 4928
  • [8] Spatial concavity of solutions to parabolic systems
    Ishige, Kazuhiro
    Nakagawa, Kazushige
    Salani, Paolo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (01) : 291 - 313
  • [9] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [10] The concavity region of solutions to the Poisson equation in the plane
    Arango, J.
    Gomez, A.
    Jimenez, J.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (08) : 1402 - 1418