POLYHARMONIC HYPERSURFACES INTO SPACE FORMS

被引:14
|
作者
Montaldo, Stefano [1 ]
Oniciuc, Cezar [2 ]
Ratto, Andrea [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Alexandru Iioan Cuza Univ Iasi, Fac Math, Bd Carol I 11, Iasi 700506, Romania
关键词
ISOPARAMETRIC HYPERSURFACES; BIHARMONIC SUBMANIFOLDS; PRINCIPAL CURVATURES; RIEMANNIAN MANIFOLD; HARMONIC MAPS; IMMERSIONS;
D O I
10.1007/s11856-022-2315-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall consider polyharmonic hypersurfaces of order r (briefly, r-harmonic hypersurfaces), where r >= 3 is an integer, into a space form Nm+1(c) of curvature c. For this class of hypersurfaces we shall prove that, We c <= 0, then any r-harmonic hypersurface must be minimal provided that the mean curvature function and the squared norm of the shape operator are constant. When the ambient space is Sm+1, we shall obtain the geometric condition which characterizes the r-harmonic hypersurfaces with constant mean curvature and constant squared norm of the shape operator, and we shall establish the hounds for these two constants. in particular, we shall prove the existence of several new examples of proper r-harmonic isoparametric hypersurfaces in Sm+1 for suitable values of m and r. Finally, we shall show that all these r-harmonic hypersurfaces are also ES-r-harmonic, i.e., critical points of the Eells-Sampson r-energy functional.
引用
收藏
页码:343 / 374
页数:32
相关论文
共 50 条
  • [31] Triharmonic CMC Hypersurfaces in Space Forms with at Most 3 Distinct Principal Curvatures
    Chen, Hang
    Guan, Zhida
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [32] CONFORMAL HOMOGENEOUS SPACELIKE HYPERSURFACES WITH TWO DISTINCT PRINCIPAL CURVATURES IN LORENTZIAN SPACE FORMS
    Ji, Xiu
    Li, Tongzhu
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (04): : 935 - 951
  • [33] Non-Hopf Real Hypersurfaces with Constant Principal Curvatures in Complex Space Forms
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (03) : 859 - 882
  • [34] On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms
    Gomes, Jose N.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 248 - 263
  • [35] On Pairs of Hypersurfaces in Euclidean Space
    M. A. Cheshkova
    Mathematical Notes, 2004, 75 : 444 - 446
  • [36] On pairs of hypersurfaces in Euclidean space
    Cheshkova, MA
    MATHEMATICAL NOTES, 2004, 75 (3-4) : 444 - 446
  • [37] HYPERSURFACES IN NON-FLAT PSEUDO-RIEMANNIAN SPACE FORMS SATISFYING A LINEAR CONDITION IN THE LINEARIZED OPERATOR OF A HIGHER ORDER MEAN CURVATURE
    Lucas, Pascual
    Fabian Ramirez-Ospina, Hector
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 15 - 45
  • [38] Hypersurfaces in the Lorentz-Minkowski space satisfying Lkψ = Aψ plus b
    Lucas, Pascual
    Fabian Ramirez-Ospina, H.
    GEOMETRIAE DEDICATA, 2011, 153 (01) : 151 - 175
  • [39] A LADDER OF CURVATURES FOR HYPERSURFACES IN THE EUCLIDEAN AMBIENT SPACE
    Brzycki, Bryan
    Giesler, Matthew D.
    Gomez, Kevin
    Odom, Lucy H.
    Suceava, Bogdan D.
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1347 - 1356
  • [40] On four dimensional Dupin hypersurfaces in Euclidean space
    Riveros, CMC
    Tenenblat, K
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2003, 75 (01): : 1 - 7