POLYHARMONIC HYPERSURFACES INTO SPACE FORMS

被引:14
|
作者
Montaldo, Stefano [1 ]
Oniciuc, Cezar [2 ]
Ratto, Andrea [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Alexandru Iioan Cuza Univ Iasi, Fac Math, Bd Carol I 11, Iasi 700506, Romania
关键词
ISOPARAMETRIC HYPERSURFACES; BIHARMONIC SUBMANIFOLDS; PRINCIPAL CURVATURES; RIEMANNIAN MANIFOLD; HARMONIC MAPS; IMMERSIONS;
D O I
10.1007/s11856-022-2315-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall consider polyharmonic hypersurfaces of order r (briefly, r-harmonic hypersurfaces), where r >= 3 is an integer, into a space form Nm+1(c) of curvature c. For this class of hypersurfaces we shall prove that, We c <= 0, then any r-harmonic hypersurface must be minimal provided that the mean curvature function and the squared norm of the shape operator are constant. When the ambient space is Sm+1, we shall obtain the geometric condition which characterizes the r-harmonic hypersurfaces with constant mean curvature and constant squared norm of the shape operator, and we shall establish the hounds for these two constants. in particular, we shall prove the existence of several new examples of proper r-harmonic isoparametric hypersurfaces in Sm+1 for suitable values of m and r. Finally, we shall show that all these r-harmonic hypersurfaces are also ES-r-harmonic, i.e., critical points of the Eells-Sampson r-energy functional.
引用
收藏
页码:343 / 374
页数:32
相关论文
共 50 条
  • [1] Polyharmonic hypersurfaces into pseudo-Riemannian space forms
    Branding, V
    Montaldo, S.
    Oniciuc, C.
    Ratto, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) : 877 - 899
  • [2] Polyharmonic hypersurfaces into complex space forms
    Balado-Alves, Jose Miguel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2463 - 2480
  • [3] Polyharmonic hypersurfaces into pseudo-Riemannian space forms
    V. Branding
    S. Montaldo
    C. Oniciuc
    A. Ratto
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 877 - 899
  • [4] On polyharmonic helices in space forms
    Branding, Volker
    ARCHIV DER MATHEMATIK, 2023, 120 (2) : 213 - 225
  • [5] Biharmonic hypersurfaces in 4-dimensional space forms
    Balmus, Adina
    Montaldo, Stefano
    Oniciuc, Cezar
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) : 1696 - 1705
  • [6] Spacelike Dupin hypersurfaces in Lorentzian space forms
    Li, Tongzhu
    Nie, Changxiong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 463 - 480
  • [7] On Triharmonic Hypersurfaces in Space Forms
    Yu Fu
    Dan Yang
    The Journal of Geometric Analysis, 2023, 33
  • [8] Classification results for polyharmonic helices in space forms
    Branding, Volker
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [9] Hypersurfaces of two space forms and conformally flat hypersurfaces
    Canevari, S.
    Tojeiro, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 1 - 20
  • [10] On Deformable Minimal Hypersurfaces in Space Forms
    Savas-Halilaj, Andreas
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1032 - 1057