Li+/Mg2+separation by membrane separation: The role of the compensatory effect

被引:67
|
作者
Xu, Fang [1 ]
Dai, Liheng [1 ]
Wu, Yulin [1 ]
Xu, Zhi [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium extraction; Covalent organic framework (COF); Membrane separation; Non-equilibrium molecular dynamics; simulation; Separation mechanism; COVALENT ORGANIC FRAMEWORKS; SALT-LAKE BRINES; NANOFILTRATION MEMBRANE; MG2+/LI+ SEPARATION; WATER DESALINATION; MOLECULAR-DYNAMICS; LITHIUM; NANOPORES; EXPLOITATION;
D O I
10.1016/j.memsci.2021.119542
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium extraction from salt-lake brines by membrane separation has become a trend to satisfy the global increasing market demand of lithium. Although some progresses have been achieved in membrane fabrication, traditional theories like steric hindrance and Donnan effect struggle to comprehensively explain why Li+/Mg2+ separation factor and Li + permeation could be simultaneously improved, which is also one of the key challenge for this technology. By using uniform nanopores in covalent organic frameworks as the model system, we herein demonstrate that the compensatory effect of pore-wall groups on ionic hydration plays a significant role in Li+/ Mg2+ separation: compensation to Li+ second hydration shells is beneficial to Li+ permeation while that to first shells is counterproductive; meanwhile less compensation to Mg2+ hydration is more advantageous to rejecting Mg2+. Via non-equilibrium molecular dynamics simulations, moderately-electropositive nanopores are discovered to be capable of simultaneously enhancing separation factor and Li+ permeation. Balanced ratio of hydrophilic and positively-charged groups on pore walls ensures the nanopores possess suitable compensatory effects that can accelerate Li + permeation while rejecting Mg2+. In contrast, hydrophobic, hydrophilic and strongly-electropositive nanopores are not competent due to their excessively weak or strong compensatory effects. The findings and understandings can be also applicable to other kinds of nanoporous materials and help to inspire other ion-separation applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fine-tuning polyamide nanofiltration membrane for ultrahigh separation selectivity of Mg2+and Li+
    Xu, Ping
    Guan, Kecheng
    Chiao, Yu-Hsuan
    Mai, Zhaohuan
    Li, Zhan
    Hu, Mengyang
    Zhang, Pengfei
    Gonzales, Ralph Rolly
    Matsuyama, Hideto
    JOURNAL OF MEMBRANE SCIENCE, 2023, 688
  • [32] Engineering charge spatial distribution and transport highways in mix-charged polyamide nanofilms for ultra-permselective Li+/ Mg2+separation
    Hu, Ping
    Yu, Minzheng
    Yang, Mengyang
    Xu, Zewen
    Yang, Dongxiao
    Song, Haojie
    Zhang, Xiaozhuan
    You, Meng
    Yuan, Bingbing
    Niu, Q. Jason
    JOURNAL OF MEMBRANE SCIENCE, 2025, 722
  • [33] Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine
    Zhao, Guoke
    Zhang, Yang
    Li, Yu
    Pan, Guoyuan
    Liu, Yiqun
    ADVANCED MEMBRANES, 2023, 3
  • [34] Efficient separation of Li+/Mg2+via positively charged TFN membrane based on the PEI interlayer
    Jia, Rui
    Wu, Liu-Kun
    Xu, Zhen-Liang
    Hedar, Mateen
    Luo, Li-Han
    Wu, Yu-Zhe
    Li, Hua-Xiang
    Tong, Yi-Hao
    Xu, Sun-Jie
    CHEMICAL ENGINEERING SCIENCE, 2024, 284
  • [35] A two-dimensional montmorillonite membrane with carbon nanotube for fast and efficient separation of Li+ and Mg2+
    Chen, Licai
    Zhao, Yunliang
    Wang, Shutong
    Wang, Wenbo
    Zhang, Lingjie
    Wen, Tong
    Wang, Zhenlei
    Cheng, Shuai
    Song, Yuhan
    Zhang, Tingting
    CHEMICAL PHYSICS LETTERS, 2025, 869
  • [36] Enhanced Mg2+/Li+ separation by nanofiltration membrane through surface modification using spirocyclic diamine
    Guo, Xiang
    Zhao, Bin
    Wang, Liang
    Zhang, Zhaohui
    Li, Jixiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [37] Incorporation of crown ether into PEI-polyamide nanofiltration membrane for efficient Mg2+/Li+ separation
    Liu, Shuyang
    Wang, Mingxia
    Dong, Linfang
    Cui, Zhenyu
    He, Benqiao
    Li, Jianxin
    Yan, Feng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [38] Construction of a hierarchical membrane with angstrom-scale ion channels for enhanced Li+/Mg2+ separation
    Fu, Lin
    Wang, Qingchen
    Hu, Yuhao
    Qian, Yongchao
    Xin, Weiwen
    Zhou, Shengyang
    Kong, Xiang-Yu
    Wen, Liping
    CHEMICAL COMMUNICATIONS, 2023, 59 (61) : 9384 - 9387
  • [39] Crown ether regulated nanocomposite membrane with lithium channels for highly selective Li+/Mg2+ separation
    Zheng, Lin
    Song, Xiangju
    Liu, Jianyun
    Jiang, Heqing
    Toghan, Arafat
    DESALINATION, 2024, 592
  • [40] Highly positively-charged membrane enabled by a competitive reaction for efficient Li+/Mg2+ separation
    Wang, Wenguang
    Wang, Chao
    Zhang, Yanqiu
    Xu, Hanyang
    Shao, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330