Relative length of longest paths and longest cycles in triangle-free graphs

被引:4
作者
Paulusma, Daniel [1 ]
Yoshimoto, Kiyoshi [2 ]
机构
[1] Univ Durham, Sci Labs, Dept Comp Sci, Durham DH1 3LE, England
[2] Nihon Univ, Coll Sci & Technol, Dept Math, Tokyo 1018308, Japan
关键词
triangle-free graph; cycle; ore-condition; relative length;
D O I
10.1016/j.disc.2007.03.070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study triangle-free graphs. Let G = (V, E) be an arbitrary triangle-free graph with minimum degree at least two and sigma(4)(G) >= vertical bar V (G)vertical bar + 2. We first show that either for any path P in G there exists a cycle C such that vertical bar V-P \ V-C vertical bar <= 1, or G is isomorphic to exactly one exception. Using this result, we show that for any set S of at most 6 vertices in G there is a cycle C such that S subset of V-C. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1222 / 1229
页数:8
相关论文
共 25 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
Ash P., 1984, PROGR GRAPH THEORY, P81
[3]   LONGEST CYCLES IN TRIANGLE-FREE GRAPHS [J].
AUNG, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) :171-186
[4]  
Bauer D, 1996, J GRAPH THEOR, V21, P405
[5]  
BOLLOBAS B, 1993, COMBINATORICA, V13, P137
[6]   CYCLES THROUGH SPECIFIED VERTICES OF A GRAPH [J].
BONDY, JA ;
LOVASZ, L .
COMBINATORICA, 1981, 1 (02) :117-140
[7]  
BONDY JA, 1980, 8016 CORR
[8]  
BRANDT S, 1997, MATH P ERDOS, V2, P32
[9]   Cycles through subsets with large degree sums [J].
Broersma, H ;
Li, H ;
Li, JP ;
Tian, F ;
Veldman, HJ .
DISCRETE MATHEMATICS, 1997, 171 (1-3) :43-54
[10]  
BROERSMA HJ, UNPUB DEGREE CONDITI