Nonergodic dynamics of the one-dimensional Bose-Hubbard model with a trapping potential

被引:7
作者
Kunimi, Masaya [1 ]
Danshita, Ippei [2 ]
机构
[1] Natl Inst Nat Sci, Inst Mol Sci, Dept Photomol Sci, Okazaki, Aichi 4448585, Japan
[2] Kindai Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; OPTICAL LATTICE; QUANTUM; THERMALIZATION; INSULATOR; TRANSITION; SUPERFLUID; BOSONS; CHAOS;
D O I
10.1103/PhysRevA.104.043322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate nonergodic behavior of the one-dimensional Bose-Hubbard model, which emerges in the unitary quantum dynamics starting with initial-state |ik (0)) = | center dot center dot center dot 2020 center dot center dot center dot ) in the presence of a trapping potential. We compute the level spacing statistic, the time evolution of the number imbalance between the odd and the even sites, and the entanglement entropy in order to show that the system exhibits nonergodicity in a strongly interacting regime. The trapping potential enhances nonergodicity even when the trapping potential is weak compared to the hopping energy. We derive the effective spin-1/2 XXZ Hamiltonian for the strongly interacting regimes by using a perturbation method. On the basis of the effective Hamiltonian, we show that the trapping potential is effectively strengthened by the on-site interaction, leading to the enhancement of the nonergodic behavior. We also calculate the real-time dynamics under the effective Hamiltonian and find that the entanglement entropy grows logarithmically in time.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[3]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[4]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Controlling quantum many-body dynamics in driven Rydberg atom arrays [J].
Bluvstein, D. ;
Omran, A. ;
Levine, H. ;
Keesling, A. ;
Semeghini, G. ;
Ebadi, S. ;
Wang, T. T. ;
Michailidis, A. A. ;
Maskara, N. ;
Ho, W. W. ;
Choi, S. ;
Serbyn, M. ;
Greiner, M. ;
Vuletic, V. ;
Lukin, M. D. .
SCIENCE, 2021, 371 (6536) :1355-+
[7]   Schrieffer-Wolff transformation for quantum many-body systems [J].
Bravyi, Sergey ;
DiVincenzo, David P. ;
Loss, Daniel .
ANNALS OF PHYSICS, 2011, 326 (10) :2793-2826
[8]   Localization and Glassy Dynamics Of Many-Body Quantum Systems [J].
Carleo, Giuseppe ;
Becca, Federico ;
Schiro, Marco ;
Fabrizio, Michele .
SCIENTIFIC REPORTS, 2012, 2
[9]   Generalized Thermalization in an Integrable Lattice System [J].
Cassidy, Amy C. ;
Clark, Charles W. ;
Rigol, Marcos .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)
[10]   Coexistence of localized and extended phases: Many-body localization in a harmonic trap [J].
Chanda, Titas ;
Yao, Ruixiao ;
Zakrzewski, Jakub .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)